Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2008

01-02-2008 | Original Article

Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106

Authors: Miho Shidahara, Yoko Ikoma, Chie Seki, Yota Fujimura, Mika Naganawa, Hiroshi Ito, Tetsuya Suhara, Iwao Kanno, Yuichi Kimura

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2008

Login to get access

Abstract

Purpose

We evaluated the noise reduction capability of wavelet denoising for estimated binding potential (BP) images (k 3/k 4) of the peripheral benzodiazepine receptor using 18F-FEDAA1106 and nonlinear least-square fitting.

Methods

Wavelet denoising within a three-dimensional discrete dual-tree complex wavelet transform was applied to simulate data and clinical dynamic positron emission tomography images of 18F-FEDAA1106. To eliminate noise components in wavelet coefficients, real and imaginary coefficients for each subband were thresholded individually using NormalShrink. A simulated dynamic brain image of 18F-FEDAA1106 was generated and Gaussian noise was added to mimic PET dynamic scan. The derived BP images were compared with true images using 156 rectangular regions of interest. Wavelet denoising was also applied to data derived from seven young normal volunteers.

Results

In the simulations, estimated BP by denoised image showed better correlation with the true BP values (Y = 0.83X + 0.94, r = 0.80), although no correlation was observed in the estimates between noise-added and true images (Y = 1.2X + 0.78, r = 0.49). For clinical data, there were visual improvements in the signal-to-noise ratio for estimated BP images.

Conclusions

Wavelet denoising improved the bias and reduced the variation of pharmacokinetic parameters for BP.
Literature
1.
go back to reference Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999;19:1189–208.PubMedCrossRef Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999;19:1189–208.PubMedCrossRef
2.
go back to reference Turkheimer FE, Brett M, Aston JA, Leff AP, Sargent PA, Wise RJ, et al. Statistical modeling of positron emission tomography images in wavelet space. J Cereb Blood Flow Metab 2000;20:1610–8.PubMedCrossRef Turkheimer FE, Brett M, Aston JA, Leff AP, Sargent PA, Wise RJ, et al. Statistical modeling of positron emission tomography images in wavelet space. J Cereb Blood Flow Metab 2000;20:1610–8.PubMedCrossRef
3.
go back to reference Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ, et al. Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 2000;20:879–93.PubMedCrossRef Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ, et al. Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 2000;20:879–93.PubMedCrossRef
4.
go back to reference Turkheimer FE, Aston J, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans Med Imag 2003;22:289–301.CrossRef Turkheimer FE, Aston J, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans Med Imag 2003;22:289–301.CrossRef
5.
go back to reference Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 2006;32:111–21.PubMedCrossRef Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 2006;32:111–21.PubMedCrossRef
6.
go back to reference Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, et al. A systematic comparison of kinetic modeling methods generating parametric maps for [11C]-(R)-PK11195. NeuroImage 2007;32:28–37.CrossRef Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, et al. A systematic comparison of kinetic modeling methods generating parametric maps for [11C]-(R)-PK11195. NeuroImage 2007;32:28–37.CrossRef
7.
go back to reference Cselenyi Z, Olsson H, Farde L, Gulyas B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET Radioligand [11C]FLB 457. NeuroImage 2000;17:47–60.CrossRef Cselenyi Z, Olsson H, Farde L, Gulyas B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET Radioligand [11C]FLB 457. NeuroImage 2000;17:47–60.CrossRef
8.
go back to reference Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB and [11C]WAY 100635. NeuroImage 2006;32:1690–708.PubMedCrossRef Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB and [11C]WAY 100635. NeuroImage 2006;32:1690–708.PubMedCrossRef
9.
go back to reference Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. NeuroImage 2000;11:458–72.PubMedCrossRef Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. NeuroImage 2000;11:458–72.PubMedCrossRef
10.
go back to reference Alpert NM, Reilhac A, Chio TC, Selesnick I. Optimization of dynamic measurement of receptor kinetics by wavelet denoising. NeuroImage 2006;30:444–51.PubMedCrossRef Alpert NM, Reilhac A, Chio TC, Selesnick I. Optimization of dynamic measurement of receptor kinetics by wavelet denoising. NeuroImage 2006;30:444–51.PubMedCrossRef
11.
go back to reference Lin JW, Laine AF, Bergmann SR. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng 2001;48:202–12.PubMedCrossRef Lin JW, Laine AF, Bergmann SR. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng 2001;48:202–12.PubMedCrossRef
12.
go back to reference Shin YY, Chen JC, Liu RS. Development of wavelet de-noising technique for PET images. Comput Med Imaging Graph 2005;29:297–304.CrossRef Shin YY, Chen JC, Liu RS. Development of wavelet de-noising technique for PET images. Comput Med Imaging Graph 2005;29:297–304.CrossRef
13.
go back to reference Arjoul L, Bentourkia M. Study of myocardial glucose metabolism in rats with PET using wavelet analysis technique. Comput Med Imaging Graph 2005;25:357–65.CrossRef Arjoul L, Bentourkia M. Study of myocardial glucose metabolism in rats with PET using wavelet analysis technique. Comput Med Imaging Graph 2005;25:357–65.CrossRef
14.
go back to reference Donoho D. De-noising by soft-thresholding. IEEE Trans Inform Theory 1995;41:613–27.CrossRef Donoho D. De-noising by soft-thresholding. IEEE Trans Inform Theory 1995;41:613–27.CrossRef
15.
go back to reference Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis- Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007;21:1–8.PubMedCrossRef Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis- Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007;21:1–8.PubMedCrossRef
16.
go back to reference Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51:4217–32.PubMedCrossRef Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51:4217–32.PubMedCrossRef
17.
go back to reference Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 2001;10:234–53.CrossRef Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 2001;10:234–53.CrossRef
18.
go back to reference Selesnick I, Li KL. Video denoising using 2D and 3D dual-tree complex wavelet transforms: Wavelet Applications in Signal and Image Processing X. Proc SPIE 2003;5207:607–18.CrossRef Selesnick I, Li KL. Video denoising using 2D and 3D dual-tree complex wavelet transforms: Wavelet Applications in Signal and Image Processing X. Proc SPIE 2003;5207:607–18.CrossRef
19.
go back to reference Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analysis of 18F-FEDAA 1106 binding to peripheral benzodiazepine receptor in living human brain. J Nucl Med 2006;47:43–50.PubMed Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analysis of 18F-FEDAA 1106 binding to peripheral benzodiazepine receptor in living human brain. J Nucl Med 2006;47:43–50.PubMed
20.
go back to reference Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11:647–93.CrossRef Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11:647–93.CrossRef
21.
go back to reference Fourati W, Bouhlel MS. A novel approach to improve the performance of JPEG2000. ICGST Inter J Graph Vis Image Process 2005;5:1–9. Fourati W, Bouhlel MS. A novel approach to improve the performance of JPEG2000. ICGST Inter J Graph Vis Image Process 2005;5:1–9.
22.
go back to reference Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431–41.CrossRef Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431–41.CrossRef
23.
go back to reference Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissue in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.PubMed Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissue in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.PubMed
24.
go back to reference Schmidt K, Turkheimer FE. Kinetic modeling in positron emission tomography. QJ Nucl Med 2002;46:70–85. Schmidt K, Turkheimer FE. Kinetic modeling in positron emission tomography. QJ Nucl Med 2002;46:70–85.
25.
go back to reference Cagnin A, Brooks DJ, Kennedy AM, Gunn R, Tuekheimer FE, Jones T, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461–7.PubMedCrossRef Cagnin A, Brooks DJ, Kennedy AM, Gunn R, Tuekheimer FE, Jones T, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461–7.PubMedCrossRef
26.
go back to reference Goerres GW, Revesz T, Duncan J, Banati RB. Imaging cerebral vasculitis in refractory epilepsy using [11C](R)-PK11195 positron emission tomography. AJR 2001;176:1016–8.PubMed Goerres GW, Revesz T, Duncan J, Banati RB. Imaging cerebral vasculitis in refractory epilepsy using [11C](R)-PK11195 positron emission tomography. AJR 2001;176:1016–8.PubMed
27.
go back to reference Banati RB, Newcombe J, Gunn RN, Caqnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.PubMedCrossRef Banati RB, Newcombe J, Gunn RN, Caqnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.PubMedCrossRef
28.
go back to reference Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26:752–8.PubMedCrossRef Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26:752–8.PubMedCrossRef
29.
go back to reference Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55:1052–4.PubMed Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55:1052–4.PubMed
30.
go back to reference Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE, et al. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 1995;36:2207–10.PubMed Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE, et al. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 1995;36:2207–10.PubMed
31.
go back to reference Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 2007;21:379–86.PubMedCrossRef Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 2007;21:379–86.PubMedCrossRef
Metadata
Title
Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106
Authors
Miho Shidahara
Yoko Ikoma
Chie Seki
Yota Fujimura
Mika Naganawa
Hiroshi Ito
Tetsuya Suhara
Iwao Kanno
Yuichi Kimura
Publication date
01-02-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0623-y

Other articles of this Issue 2/2008

European Journal of Nuclear Medicine and Molecular Imaging 2/2008 Go to the issue