Skip to main content
Top
Published in: Skeletal Radiology 2/2022

01-02-2022 | Osteoarthrosis | Review Article

AI MSK clinical applications: cartilage and osteoarthritis

Authors: Gabby B. Joseph, Charles E. McCulloch, Jae Ho Sohn, Valentina Pedoia, Sharmila Majumdar, Thomas M. Link

Published in: Skeletal Radiology | Issue 2/2022

Login to get access

Abstract

The advancements of artificial intelligence (AI) for osteoarthritis (OA) applications have been rapid in recent years, particularly innovations of deep learning for image classification, lesion detection, cartilage segmentation, and prediction modeling of future knee OA development. This review article focuses on AI applications in OA research, first describing machine learning (ML) techniques and workflow, followed by how these algorithms are used for OA classification tasks through imaging and non-imaging-based ML models. Deep learning applications for OA research, including analysis of both radiographs for automatic detection of OA severity, and MR images for detection of cartilage/meniscus lesions and cartilage segmentation for automatic T2 quantification will be described. In addition, information on ML models that identify individuals at high risk of OA development will be provided. The future vision of machine learning applications in imaging of OA and cartilage hinges on implementation of AI for optimizing imaging protocols, quantitative assessment of cartilage, and automated analysis of disease burden yielding a faster and more efficient workflow for a radiologist with a higher level of reproducibility and precision. It may also provide risk assessment tools for individual patients, which is an integral part of precision medicine.
Literature
1.
go back to reference Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.PubMedCrossRef Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.PubMedCrossRef
2.
go back to reference Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs. 2012;112(3 Suppl 1):S13–9.PubMedCrossRef Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs. 2012;112(3 Suppl 1):S13–9.PubMedCrossRef
3.
go back to reference Weinstein AM, Rome BN, Reichmann WM, Collins JE, Burbine SA, Thornhill TS, et al. Estimating the burden of total knee replacement in the United States. J Bone Joint Surg Am. 2013;95(5):385–92.PubMedPubMedCentralCrossRef Weinstein AM, Rome BN, Reichmann WM, Collins JE, Burbine SA, Thornhill TS, et al. Estimating the burden of total knee replacement in the United States. J Bone Joint Surg Am. 2013;95(5):385–92.PubMedPubMedCentralCrossRef
4.
go back to reference Center ME-bP. Total knee replacement. Minneapolis: Agency for Healthcare and Research Quality; 2003. Center ME-bP. Total knee replacement. Minneapolis: Agency for Healthcare and Research Quality; 2003.
6.
go back to reference Dell’Isola A, Allan R, Smith SL, Marreiros SS, Steultjens M. Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord. 2016;17(1):425.PubMedPubMedCentralCrossRef Dell’Isola A, Allan R, Smith SL, Marreiros SS, Steultjens M. Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord. 2016;17(1):425.PubMedPubMedCentralCrossRef
7.
go back to reference Waarsing JH, Bierma-Zeinstra SM, Weinans H. Distinct subtypes of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology (Oxford). 2015;54(9):1650–8.CrossRef Waarsing JH, Bierma-Zeinstra SM, Weinans H. Distinct subtypes of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology (Oxford). 2015;54(9):1650–8.CrossRef
8.
go back to reference Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage. 2017;25(12):1926–41.PubMedCrossRef Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage. 2017;25(12):1926–41.PubMedCrossRef
9.
go back to reference Roddy E, Doherty M. Changing life-styles and osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2006;20(1):81–97.PubMedCrossRef Roddy E, Doherty M. Changing life-styles and osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2006;20(1):81–97.PubMedCrossRef
10.
go back to reference Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.PubMedCrossRef Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.PubMedCrossRef
11.
go back to reference Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015;16(3):6093–112.PubMedPubMedCentralCrossRef Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015;16(3):6093–112.PubMedPubMedCentralCrossRef
12.
go back to reference Sharma L, Nevitt M, Hochberg M, Guermazi A, Roemer FW, Crema M, et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann Rheum Dis. 2016;75(9):1630–6.PubMedCrossRef Sharma L, Nevitt M, Hochberg M, Guermazi A, Roemer FW, Crema M, et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann Rheum Dis. 2016;75(9):1630–6.PubMedCrossRef
13.
go back to reference Baum T, Joseph GB, Arulanandan A, Nardo L, Virayavanich W, Carballido-Gamio J, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res. 2012;64(2):248–55.CrossRef Baum T, Joseph GB, Arulanandan A, Nardo L, Virayavanich W, Carballido-Gamio J, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res. 2012;64(2):248–55.CrossRef
14.
go back to reference Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.CrossRef Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.CrossRef
16.
go back to reference Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthritis and Cartilage Open. 2020;2(3):100069. Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthritis and Cartilage Open. 2020;2(3):100069.
17.
go back to reference Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019;23(3):304–11.PubMedCrossRef Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019;23(3):304–11.PubMedCrossRef
18.
go back to reference Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Gersing AS, Kretzschmar M, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517–26.PubMedCrossRef Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Gersing AS, Kretzschmar M, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517–26.PubMedCrossRef
19.
go back to reference Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging. 2019;32(3):471–7.PubMedCrossRef Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging. 2019;32(3):471–7.PubMedCrossRef
20.
go back to reference Furche T, Gottlob G, Libkin L, Orsi G, Paton NW. Data wrangling for big data: challenges and opportunities. InEDBT. 2016;16:473–8. Furche T, Gottlob G, Libkin L, Orsi G, Paton NW. Data wrangling for big data: challenges and opportunities. InEDBT. 2016;16:473–8.
22.
go back to reference Jerez JM, Molina I, García-Laencina PJ, Alba E, Ribelles N, Martín M, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med. 2010;50(2):105–15.PubMedCrossRef Jerez JM, Molina I, García-Laencina PJ, Alba E, Ribelles N, Martín M, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med. 2010;50(2):105–15.PubMedCrossRef
23.
go back to reference Reddy GT, Reddy MPK, Lakshmanna K, Kaluri R, Rajput DS, Srivastava G, et al. Analysis of dimensionality reduction techniques on big data. IEEE Access. 2020;8:54776–88.CrossRef Reddy GT, Reddy MPK, Lakshmanna K, Kaluri R, Rajput DS, Srivastava G, et al. Analysis of dimensionality reduction techniques on big data. IEEE Access. 2020;8:54776–88.CrossRef
24.
go back to reference Jamshidi A, Pelletier JP, Martel-Pelletier J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(1):49–60.PubMedCrossRef Jamshidi A, Pelletier JP, Martel-Pelletier J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(1):49–60.PubMedCrossRef
25.
go back to reference Guo X, Yin Y, Dong C, Yang G, Zhou G. On the class imbalance problem. In: 2008 Fourth international conference on natural computation. IEEE; 2008. Vol. 4, pp. 192–201. Guo X, Yin Y, Dong C, Yang G, Zhou G. On the class imbalance problem. In: 2008 Fourth international conference on natural computation. IEEE; 2008. Vol. 4, pp. 192–201.
26.
go back to reference Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.PubMedCrossRef Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.PubMedCrossRef
27.
go back to reference Hugle M, Omoumi P, van Laar JM, Boedecker J, Hugle T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol Adv Pract. 2020;4(1):rkaa005.PubMedPubMedCentralCrossRef Hugle M, Omoumi P, van Laar JM, Boedecker J, Hugle T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol Adv Pract. 2020;4(1):rkaa005.PubMedPubMedCentralCrossRef
28.
go back to reference Webb GI, Keogh E, Miikkulainen R. Naïve Bayes. Encyclopedia of machine learning. 2010;15:713-4. Webb GI, Keogh E, Miikkulainen R. Naïve Bayes. Encyclopedia of machine learning. 2010;15:713-4.
29.
go back to reference Singh A, Thakur N, Sharma A, editors. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016 16–18 March 2016. Singh A, Thakur N, Sharma A, editors. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016 16–18 March 2016.
30.
go back to reference Kherif F, Latypova A. Chapter 12 - Principal component analysis. In: Mechelli A, Vieira S, editors. Machine Learning. Academic Press; 2020. p. 209–25.CrossRef Kherif F, Latypova A. Chapter 12 - Principal component analysis. In: Mechelli A, Vieira S, editors. Machine Learning. Academic Press; 2020. p. 209–25.CrossRef
31.
go back to reference Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthr Cartil Open. 2020;2(3):100069.CrossRef Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthr Cartil Open. 2020;2(3):100069.CrossRef
34.
go back to reference Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, de Mendonça A. Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4(1):299.PubMedPubMedCentralCrossRef Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, de Mendonça A. Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4(1):299.PubMedPubMedCentralCrossRef
35.
go back to reference Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:201016061. 2020. Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:201016061. 2020.
37.
go back to reference Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef
38.
go back to reference Laber EB, Murphy SA, editors. Small sample inference for generalization error in classification using the CUD bound. Uncertainty in artificial intelligence: proceedings of the conference Conference on Uncertainty in Artificial Intelligence; 2008: NIH Public Access. Laber EB, Murphy SA, editors. Small sample inference for generalization error in classification using the CUD bound. Uncertainty in artificial intelligence: proceedings of the conference Conference on Uncertainty in Artificial Intelligence; 2008: NIH Public Access.
39.
go back to reference Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.PubMedCrossRef Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.PubMedCrossRef
40.
go back to reference Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, Metrustry S, Castano-Betancourt M, Hart DJ, et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis. 2014;73(12):2116–21.PubMedCrossRef Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, Metrustry S, Castano-Betancourt M, Hart DJ, et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis. 2014;73(12):2116–21.PubMedCrossRef
41.
go back to reference Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res. 2017;35(10):2243–50.PubMedPubMedCentralCrossRef Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res. 2017;35(10):2243–50.PubMedPubMedCentralCrossRef
42.
go back to reference Štajduhar I, Mamula M, Miletić D, Ünal G. Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Programs Biomed. 2017;140:151–64.PubMedCrossRef Štajduhar I, Mamula M, Miletić D, Ünal G. Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Programs Biomed. 2017;140:151–64.PubMedCrossRef
43.
go back to reference Lazzarini N, Runhaar J, Bay-Jensen AC, Thudium CS, Bierma-Zeinstra SMA, Henrotin Y, et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthr Cartil. 2017;25(12):2014–21.CrossRef Lazzarini N, Runhaar J, Bay-Jensen AC, Thudium CS, Bierma-Zeinstra SMA, Henrotin Y, et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthr Cartil. 2017;25(12):2014–21.CrossRef
44.
go back to reference Halilaj E, Le Y, Hicks JL, Hastie TJ, Delp SL. Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26(12):1643–50.CrossRef Halilaj E, Le Y, Hicks JL, Hastie TJ, Delp SL. Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26(12):1643–50.CrossRef
45.
go back to reference Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289(1):160–9.PubMedCrossRef Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289(1):160–9.PubMedCrossRef
46.
go back to reference Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep. 2018;8(1):1727.PubMedPubMedCentralCrossRef Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep. 2018;8(1):1727.PubMedPubMedCentralCrossRef
47.
go back to reference Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699.PubMedPubMedCentralCrossRef Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699.PubMedPubMedCentralCrossRef
48.
go back to reference Du Y, Almajalid R, Shan J, Zhang M. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobioscience. 2018;17(3):228–36.PubMedCrossRef Du Y, Almajalid R, Shan J, Zhang M. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobioscience. 2018;17(3):228–36.PubMedCrossRef
49.
go back to reference Antony J. Automatic quantification of radiographic knee osteoarthritis severity and associated diagnostic features using deep convolutional neural networks (Doctoral dissertation, Dublin City University). 2018. http://doras.dcu.ie/22154/. Antony J. Automatic quantification of radiographic knee osteoarthritis severity and associated diagnostic features using deep convolutional neural networks (Doctoral dissertation, Dublin City University). 2018. http://​doras.​dcu.​ie/​22154/​.
50.
go back to reference Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49(2):400–10.PubMedCrossRef Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49(2):400–10.PubMedCrossRef
51.
go back to reference Nelson AE, Fang F, Arbeeva L, Cleveland RJ, Schwartz TA, Callahan LF, et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium. Osteoarthr Cartil. 2019;27(7):994–1001.CrossRef Nelson AE, Fang F, Arbeeva L, Cleveland RJ, Schwartz TA, Callahan LF, et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium. Osteoarthr Cartil. 2019;27(7):994–1001.CrossRef
52.
go back to reference Brahim A, Jennane R, Riad R, Janvier T, Khedher L, Toumi H, et al. A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: data from the OsteoArthritis Initiative. Comput Med Imaging Graph. 2019;73:11–8.PubMedCrossRef Brahim A, Jennane R, Riad R, Janvier T, Khedher L, Toumi H, et al. A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: data from the OsteoArthritis Initiative. Comput Med Imaging Graph. 2019;73:11–8.PubMedCrossRef
53.
go back to reference Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100(4):243–9.PubMedCrossRef Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100(4):243–9.PubMedCrossRef
54.
go back to reference Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019;100(4):235–42.PubMedCrossRef Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019;100(4):235–42.PubMedCrossRef
55.
go back to reference Abedin J, Antony J, McGuinness K, Moran K, O’Connor NE, Rebholz-Schuhmann D, et al. Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci Rep. 2019;9(1):5761.PubMedPubMedCentralCrossRef Abedin J, Antony J, McGuinness K, Moran K, O’Connor NE, Rebholz-Schuhmann D, et al. Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci Rep. 2019;9(1):5761.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthritis Cartilage. 2019;27(7):1002–10.PubMedPubMedCentralCrossRef Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthritis Cartilage. 2019;27(7):1002–10.PubMedPubMedCentralCrossRef
58.
go back to reference Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9(1):20038.PubMedPubMedCentralCrossRef Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9(1):20038.PubMedPubMedCentralCrossRef
59.
go back to reference Jamshidi A, Leclercq M, Labbe A, Pelletier JP, Abram F, Droit A, et al. Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods. Ther Adv Musculoskelet Dis. 2020;12:1759720X20933468.PubMedPubMedCentralCrossRef Jamshidi A, Leclercq M, Labbe A, Pelletier JP, Abram F, Droit A, et al. Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods. Ther Adv Musculoskelet Dis. 2020;12:1759720X20933468.PubMedPubMedCentralCrossRef
60.
go back to reference Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the Osteoarthritis Initiative. Radiology. 2020;296(3):584–93.PubMedCrossRef Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the Osteoarthritis Initiative. Radiology. 2020;296(3):584–93.PubMedCrossRef
61.
go back to reference Widera P, Welsing PMJ, Ladel C, Loughlin J, Lafeber F, Petit Dop F, et al. Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data. Sci Rep. 2020;10(1):8427.PubMedPubMedCentralCrossRef Widera P, Welsing PMJ, Ladel C, Loughlin J, Lafeber F, Petit Dop F, et al. Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data. Sci Rep. 2020;10(1):8427.PubMedPubMedCentralCrossRef
62.
go back to reference Alexos A, Moustakidis S, Kokkotis C, Tsaopoulos D. Physical activity as a risk factor in the progression of osteoarthritis: a machine learning perspective. In: International Conference on Learning and Intelligent Optimization. Cham: Springer; 2020. pp. 16–26. Alexos A, Moustakidis S, Kokkotis C, Tsaopoulos D. Physical activity as a risk factor in the progression of osteoarthritis: a machine learning perspective. In: International Conference on Learning and Intelligent Optimization. Cham: Springer; 2020. pp. 16–26.
63.
go back to reference Thomas KA, Kidziński Ł, Halilaj E, Fleming SL, Venkataraman GR, Oei EH, et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell. 2020;2(2):e190065.PubMedPubMedCentralCrossRef Thomas KA, Kidziński Ł, Halilaj E, Fleming SL, Venkataraman GR, Oei EH, et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell. 2020;2(2):e190065.PubMedPubMedCentralCrossRef
64.
go back to reference Kwon SB, Ku Y, Han HU, Lee MC, Kim HC, Ro DH. A machine learning-based diagnostic model associated with knee osteoarthritis severity. Sci Rep. 2020;10(1):15743.PubMedPubMedCentralCrossRef Kwon SB, Ku Y, Han HU, Lee MC, Kim HC, Ro DH. A machine learning-based diagnostic model associated with knee osteoarthritis severity. Sci Rep. 2020;10(1):15743.PubMedPubMedCentralCrossRef
65.
go back to reference Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthr Cartil. 2020;28(4):428–37.CrossRef Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthr Cartil. 2020;28(4):428–37.CrossRef
66.
go back to reference Guan B, Liu F, Matthew P, Mirzaian AH, Demehri S, Neogi T, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Osteoarthr Cartil. 2020;28:S316.CrossRef Guan B, Liu F, Matthew P, Mirzaian AH, Demehri S, Neogi T, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Osteoarthr Cartil. 2020;28:S316.CrossRef
67.
68.
go back to reference Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2021;39(1):74–85.PubMedCrossRef Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2021;39(1):74–85.PubMedCrossRef
69.
go back to reference Joseph GB, Mcculloch CE, Nevitt MC, Link TM, JH. S, editors. Machine learning for predicting knee osteoarthritis progression over 8 years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative World Congress on Osteoarthritis; 2021; Virtual due to Covid 19. Joseph GB, Mcculloch CE, Nevitt MC, Link TM, JH. S, editors. Machine learning for predicting knee osteoarthritis progression over 8 years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative World Congress on Osteoarthritis; 2021; Virtual due to Covid 19.
70.
go back to reference Gan H-S, Ramlee MH, Wahab AA, Lee Y-S, Shimizu A. From classical to deep learning: review on cartilage and bone segmentation techniques in knee osteoarthritis research. Artif Intell Rev. 2021;54(4):2445–94.CrossRef Gan H-S, Ramlee MH, Wahab AA, Lee Y-S, Shimizu A. From classical to deep learning: review on cartilage and bone segmentation techniques in knee osteoarthritis research. Artif Intell Rev. 2021;54(4):2445–94.CrossRef
72.
go back to reference Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000;35(10):602–21.PubMedCrossRef Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000;35(10):602–21.PubMedCrossRef
73.
go back to reference Joseph GB, McCulloch CE, Nevitt MC, Gersing AS, Schwaiger BJ, Kretzschmar M, et al. Medial femur T2 Z-scores predict the probability of knee structural worsening over 4–8 years: data from the osteoarthritis initiative. J Magn Reson Imaging. 2017;46(4):1128–36.PubMedPubMedCentralCrossRef Joseph GB, McCulloch CE, Nevitt MC, Gersing AS, Schwaiger BJ, Kretzschmar M, et al. Medial femur T2 Z-scores predict the probability of knee structural worsening over 4–8 years: data from the osteoarthritis initiative. J Magn Reson Imaging. 2017;46(4):1128–36.PubMedPubMedCentralCrossRef
74.
go back to reference Li X, Ma C, Link T, Castillo D, Blumenkrantz G, Lozano J, et al. In vivo T1rho and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 Tesla MRI. Osteoarthr Cartil. 2007;15(7):789–97.CrossRef Li X, Ma C, Link T, Castillo D, Blumenkrantz G, Lozano J, et al. In vivo T1rho and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 Tesla MRI. Osteoarthr Cartil. 2007;15(7):789–97.CrossRef
75.
go back to reference Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.PubMedPubMedCentralCrossRef Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.PubMedPubMedCentralCrossRef
76.
go back to reference Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.PubMedCrossRef Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.PubMedCrossRef
77.
go back to reference Serebrakian AT, Poulos T, Liebl H, Joseph GB, Lai A, Nevitt MC, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41(5):1272–80.PubMedCrossRef Serebrakian AT, Poulos T, Liebl H, Joseph GB, Lai A, Nevitt MC, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41(5):1272–80.PubMedCrossRef
78.
go back to reference Ferrero G, Sconfienza LM, Fiz F, Fabbro E, Corazza A, Dettore D, et al. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping. Eur Radiol. 2018;28(6):2345–55.PubMedCrossRef Ferrero G, Sconfienza LM, Fiz F, Fabbro E, Corazza A, Dettore D, et al. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping. Eur Radiol. 2018;28(6):2345–55.PubMedCrossRef
79.
go back to reference Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010;38(5):934–42.PubMedCrossRef Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010;38(5):934–42.PubMedCrossRef
83.
go back to reference Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International Conference on Machine Learning. PMLR; 2017. pp. 3145–53. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International Conference on Machine Learning. PMLR; 2017. pp. 3145–53.
84.
go back to reference Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:14126806. 2014. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:14126806. 2014.
85.
go back to reference Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2021;23(1):18. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2021;23(1):18.
87.
go back to reference Torrey L, Shavlik J, Olivas ES, Guerrero JM, Sober MM, Benedito JM, Lopez AS. Handbook of research on machine learning applications and trends. Hershey: Information Science Reference; 2010. pp. 242–64. Torrey L, Shavlik J, Olivas ES, Guerrero JM, Sober MM, Benedito JM, Lopez AS. Handbook of research on machine learning applications and trends. Hershey: Information Science Reference; 2010. pp. 242–64.
88.
go back to reference Tiulpin A, Saarakkala S. Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics. 2020;10(11):932. Tiulpin A, Saarakkala S. Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics. 2020;10(11):932.
90.
go back to reference Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.PubMedCrossRef Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.PubMedCrossRef
91.
go back to reference Oneto L, Navarin N, Sperduti A, Anguita D. Recent trends in learning from data: tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) (Studies in Computational Intelligence) Springer; 2020. Oneto L, Navarin N, Sperduti A, Anguita D. Recent trends in learning from data: tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) (Studies in Computational Intelligence) Springer; 2020.
92.
go back to reference Moustakidis S, Papandrianos NI, Christodolou E, Papageorgiou E, Tsaopoulos D. Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness. Neural Computing and Applications. 2020. Moustakidis S, Papandrianos NI, Christodolou E, Papageorgiou E, Tsaopoulos D. Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness. Neural Computing and Applications. 2020.
Metadata
Title
AI MSK clinical applications: cartilage and osteoarthritis
Authors
Gabby B. Joseph
Charles E. McCulloch
Jae Ho Sohn
Valentina Pedoia
Sharmila Majumdar
Thomas M. Link
Publication date
01-02-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 2/2022
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-021-03909-2

Other articles of this Issue 2/2022

Skeletal Radiology 2/2022 Go to the issue