Skip to main content
Top
Published in: Pediatric Radiology 11/2022

Open Access 16-07-2021 | Musculoskeletal Radiology | Artificial intelligence in pediatric radiology

Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology

Author: Amaka C. Offiah

Published in: Pediatric Radiology | Issue 11/2022

Login to get access

Abstract

Artificial intelligence (AI) is playing an ever-increasing role in radiology (more so in the adult world than in pediatrics), to the extent that there are unfounded fears it will completely take over the role of the radiologist. In relation to musculoskeletal applications of AI in pediatric radiology, we are far from the time when AI will replace radiologists; even for the commonest application (bone age assessment), AI is more often employed in an AI-assist mode rather than an AI-replace or AI-extend mode. AI for bone age assessment has been in clinical use for more than a decade and is the area in which most research has been conducted. Most other potential indications in children (such as appendicular and vertebral fracture detection) remain largely in the research domain. This article reviews the areas in which AI is most prominent in relation to the pediatric musculoskeletal system, briefly summarizing the current literature and highlighting areas for future research. Pediatric radiologists are encouraged to participate as members of the research teams conducting pediatric radiology artificial intelligence research.
Literature
3.
go back to reference Koska IO (2019) Applications of deep learning in radiology and pediatric radiology. Pediatr Radiol 49:247–317 Koska IO (2019) Applications of deep learning in radiology and pediatric radiology. Pediatr Radiol 49:247–317
4.
go back to reference Van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39:591–597PubMedCrossRef Van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39:591–597PubMedCrossRef
5.
go back to reference Thodberg HH, Sävendahl L (2010) Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol 17:1425–1432PubMedCrossRef Thodberg HH, Sävendahl L (2010) Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol 17:1425–1432PubMedCrossRef
6.
go back to reference Kim JR, Lee YS, Yu J (2015) Assessment of bone age in prepubertal healthy Korean children: comparison among the Korean standard bone age chart, Greulich-Pyle method, and Tanner-Whitehouse method. Korean J Radiol 16:201–205PubMedPubMedCentralCrossRef Kim JR, Lee YS, Yu J (2015) Assessment of bone age in prepubertal healthy Korean children: comparison among the Korean standard bone age chart, Greulich-Pyle method, and Tanner-Whitehouse method. Korean J Radiol 16:201–205PubMedPubMedCentralCrossRef
7.
go back to reference Alshamrani K, Messina F, Offiah AC (2019) Is the Greulich & Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol 29:2910–2923PubMedPubMedCentralCrossRef Alshamrani K, Messina F, Offiah AC (2019) Is the Greulich & Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol 29:2910–2923PubMedPubMedCentralCrossRef
8.
go back to reference Alshamrani K, Offiah AC (2020) Applicability of two commonly used bone age assessment methods to 21st century UK children. Eur Radiol 30:504–513PubMedCrossRef Alshamrani K, Offiah AC (2020) Applicability of two commonly used bone age assessment methods to 21st century UK children. Eur Radiol 30:504–513PubMedCrossRef
9.
go back to reference Alshamrani K, Hewitt A, Offiah AC (2020) Applicability of two bone age assessment methods to children from Saudi Arabia. Clin Radiol 75:156.e1–156.e9CrossRef Alshamrani K, Hewitt A, Offiah AC (2020) Applicability of two bone age assessment methods to children from Saudi Arabia. Clin Radiol 75:156.e1–156.e9CrossRef
10.
go back to reference Pose Lepe G, Villacrés F, Fuente-Alba CS, Guiloff S (2018) Correlation in radiological bone age determination using the Greulich and Pyle method versus automated evaluation using BoneXpert software. Rev Chil Pediatr 89:606–611PubMed Pose Lepe G, Villacrés F, Fuente-Alba CS, Guiloff S (2018) Correlation in radiological bone age determination using the Greulich and Pyle method versus automated evaluation using BoneXpert software. Rev Chil Pediatr 89:606–611PubMed
11.
go back to reference Booz C, Yel I, Wichmann JL et al (2020) Artificial intelligence in bone age assessment: accuracy and efficiency of a novel fully automated algorithm compared to the Greulich-Pyle method. Eur Radiol Exp 4:6PubMedPubMedCentralCrossRef Booz C, Yel I, Wichmann JL et al (2020) Artificial intelligence in bone age assessment: accuracy and efficiency of a novel fully automated algorithm compared to the Greulich-Pyle method. Eur Radiol Exp 4:6PubMedPubMedCentralCrossRef
12.
go back to reference Martin DD, Deusch D, Schweizer R et al (2009) Clinical application of automated Greulich-Pyle bone age determination in children with short stature. Pediatr Radiol 39:598–607PubMedCrossRef Martin DD, Deusch D, Schweizer R et al (2009) Clinical application of automated Greulich-Pyle bone age determination in children with short stature. Pediatr Radiol 39:598–607PubMedCrossRef
13.
go back to reference Unrath M, Thodberg HH, Schweizer R et al (2013) Automation of bone age reading and a new prediction model improve adult height prediction in children with short stature. Horm Res Paediatr 78:312–319CrossRef Unrath M, Thodberg HH, Schweizer R et al (2013) Automation of bone age reading and a new prediction model improve adult height prediction in children with short stature. Horm Res Paediatr 78:312–319CrossRef
14.
go back to reference Martin DD, Meister K, Schweizer R et al (2011) Validation of automatic bone age rating in children with precocious and early puberty. J Pediatr Endocrinol Metab 24:1009–1014PubMedCrossRef Martin DD, Meister K, Schweizer R et al (2011) Validation of automatic bone age rating in children with precocious and early puberty. J Pediatr Endocrinol Metab 24:1009–1014PubMedCrossRef
15.
go back to reference Martin DD, Heil K, Heckmann C et al (2013) Validation of automatic bone age determination in children with congenital adrenal hyperplasia. Pediatr Radiol 43:1615–1621PubMedCrossRef Martin DD, Heil K, Heckmann C et al (2013) Validation of automatic bone age determination in children with congenital adrenal hyperplasia. Pediatr Radiol 43:1615–1621PubMedCrossRef
16.
go back to reference Martin DD, Sato K, Sato M et al (2010) Validation of a new method for automated determination of bone age in Japanese children. Horm Res Paediatr 73:398–404PubMedCrossRef Martin DD, Sato K, Sato M et al (2010) Validation of a new method for automated determination of bone age in Japanese children. Horm Res Paediatr 73:398–404PubMedCrossRef
17.
go back to reference Van Rijn RR, Thodberg HH (2013) Bone age assessment: automated techniques coming of age? Acta Radiol 54:1024–1029PubMedCrossRef Van Rijn RR, Thodberg HH (2013) Bone age assessment: automated techniques coming of age? Acta Radiol 54:1024–1029PubMedCrossRef
18.
go back to reference Martin DD, Thodberg HH (2019) Validation of a new version of BoneXpert bone age in children with congenital adrenal hyperplasia (CAH), precocious puberty (PP), growth hormone deficiency (GHD), turner syndrome (TS), and other short stature diagnoses. Horm Res Paediatr 91:26 Martin DD, Thodberg HH (2019) Validation of a new version of BoneXpert bone age in children with congenital adrenal hyperplasia (CAH), precocious puberty (PP), growth hormone deficiency (GHD), turner syndrome (TS), and other short stature diagnoses. Horm Res Paediatr 91:26
19.
go back to reference Halabi SS, Prevedello LM, Kalpathy-Cramer J et al (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290:498–503PubMedCrossRef Halabi SS, Prevedello LM, Kalpathy-Cramer J et al (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290:498–503PubMedCrossRef
20.
go back to reference Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322PubMedCrossRef Larson DB, Chen MC, Lungren MP et al (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322PubMedCrossRef
22.
go back to reference Mutasa C, Chang PD, Ruzal-Shapiro C, Ayyala R (2018) MABAL: a novel deep-learning architecture for machine-assisted bone age labeling. J Digit Imaging 31:513–519PubMedPubMedCentralCrossRef Mutasa C, Chang PD, Ruzal-Shapiro C, Ayyala R (2018) MABAL: a novel deep-learning architecture for machine-assisted bone age labeling. J Digit Imaging 31:513–519PubMedPubMedCentralCrossRef
23.
go back to reference Pan I, Thodberg HH, Halabi SS et al (2019) Improving automated pediatric bone age estimation using ensembles of models from the 2017 RSNA machine learning challenge. Radiol Artif Intell 1:e190053PubMedPubMedCentralCrossRef Pan I, Thodberg HH, Halabi SS et al (2019) Improving automated pediatric bone age estimation using ensembles of models from the 2017 RSNA machine learning challenge. Radiol Artif Intell 1:e190053PubMedPubMedCentralCrossRef
24.
go back to reference Tajmir SH, Lee H, Shailam RS et al (2019) Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skelet Radiol 48:275–283CrossRef Tajmir SH, Lee H, Shailam RS et al (2019) Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skelet Radiol 48:275–283CrossRef
25.
go back to reference Pan I, Baird GL, Mutasa S et al (2020) Rethinking Greulich and Pyle: a deep learning approach to pediatric bone age assessment using pediatric trauma hand radiographs. Radiol Artif Intell 2:e190198PubMedPubMedCentralCrossRef Pan I, Baird GL, Mutasa S et al (2020) Rethinking Greulich and Pyle: a deep learning approach to pediatric bone age assessment using pediatric trauma hand radiographs. Radiol Artif Intell 2:e190198PubMedPubMedCentralCrossRef
26.
go back to reference Reddy NE, Rayan JC, Annapragada AV et al (2020) Bone age determination using only the index finger: a novel approach using a convolutional neural network compared with human radiologists. Pediatr Radiol 50:516–523PubMedCrossRef Reddy NE, Rayan JC, Annapragada AV et al (2020) Bone age determination using only the index finger: a novel approach using a convolutional neural network compared with human radiologists. Pediatr Radiol 50:516–523PubMedCrossRef
27.
go back to reference Li Y, Huang Z, Dong X et al (2019) Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol 29:2322–2329PubMedCrossRef Li Y, Huang Z, Dong X et al (2019) Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol 29:2322–2329PubMedCrossRef
28.
go back to reference Lei YY, Shen YS, Wang YH, Zhao H (2019) Regression algorithm of bone age estimation of knee-joint based on principal component analysis and support vector machine. Fa Yi Xue Za Zhi 35:194–199PubMed Lei YY, Shen YS, Wang YH, Zhao H (2019) Regression algorithm of bone age estimation of knee-joint based on principal component analysis and support vector machine. Fa Yi Xue Za Zhi 35:194–199PubMed
29.
go back to reference Štern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403PubMedCrossRef Štern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403PubMedCrossRef
30.
go back to reference Štern D, Payer C, Urschler M (2019) Automated age estimation from MRI volumes of the hand. Med Image Anal 58:101538PubMedCrossRef Štern D, Payer C, Urschler M (2019) Automated age estimation from MRI volumes of the hand. Med Image Anal 58:101538PubMedCrossRef
31.
go back to reference Tang FH, Chan JLC, Chan BKL (2019) Accurate age determination for adolescents using magnetic resonance imaging of the hand and wrist with an artificial neural network-based approach. J Digit Imaging 32:283–289PubMedCrossRef Tang FH, Chan JLC, Chan BKL (2019) Accurate age determination for adolescents using magnetic resonance imaging of the hand and wrist with an artificial neural network-based approach. J Digit Imaging 32:283–289PubMedCrossRef
32.
go back to reference Auf der Mauer M, Joop-van Well E, Herrmann J et al (2020) Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med 135:649–663CrossRef Auf der Mauer M, Joop-van Well E, Herrmann J et al (2020) Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med 135:649–663CrossRef
33.
go back to reference Dallora L, Anderberg P, Kvist O et al (2019) Bone age assessment with various machine learning techniques: a systematic review and meta-analysis. PLoS One 14:e0220242PubMedPubMedCentralCrossRef Dallora L, Anderberg P, Kvist O et al (2019) Bone age assessment with various machine learning techniques: a systematic review and meta-analysis. PLoS One 14:e0220242PubMedPubMedCentralCrossRef
34.
35.
go back to reference Digby M, Bishop NJ, Paggiosi M, Offiah AC (2016) HR-pQCT: a non-invasive “biopsy” to assess bone structure and strength. Arch Dis Child Educ Pract Ed 101:268–270PubMedCrossRef Digby M, Bishop NJ, Paggiosi M, Offiah AC (2016) HR-pQCT: a non-invasive “biopsy” to assess bone structure and strength. Arch Dis Child Educ Pract Ed 101:268–270PubMedCrossRef
37.
go back to reference Barnett E, Nordin BE (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174PubMedCrossRef Barnett E, Nordin BE (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174PubMedCrossRef
38.
go back to reference Nusman CM, Anink J, Otten MH et al (2015) Bone health of patients with juvenile idiopathic arthritis: a comparison between dual-energy X-ray absorptiometry and digital X-ray radiogrammetry. Eur J Radiol 84:1999–2003PubMedCrossRef Nusman CM, Anink J, Otten MH et al (2015) Bone health of patients with juvenile idiopathic arthritis: a comparison between dual-energy X-ray absorptiometry and digital X-ray radiogrammetry. Eur J Radiol 84:1999–2003PubMedCrossRef
39.
go back to reference Schündeln MM, Marschke L, Bauer JJ et al (2016) A piece of the puzzle: the bone health index of the BoneXpert software reflects cortical bone mineral density in pediatric and adolescent patients. PLoS One 11:e0151936PubMedPubMedCentralCrossRef Schündeln MM, Marschke L, Bauer JJ et al (2016) A piece of the puzzle: the bone health index of the BoneXpert software reflects cortical bone mineral density in pediatric and adolescent patients. PLoS One 11:e0151936PubMedPubMedCentralCrossRef
40.
go back to reference Neelis E, Rijnen N, Sluimer J et al (2018) Bone health of children with intestinal failure measured by dual energy X-ray absorptiometry and digital X-ray radiogrammetry. Clin Nutr 37:687–694PubMedCrossRef Neelis E, Rijnen N, Sluimer J et al (2018) Bone health of children with intestinal failure measured by dual energy X-ray absorptiometry and digital X-ray radiogrammetry. Clin Nutr 37:687–694PubMedCrossRef
41.
go back to reference Alshamrani K, Messina F, Bishop NJ, Offiah AC (2019) Estimating bone mass in children: can bone health index replace dual energy X-ray absorptiometry? Pediatr Radiol 49:372–378PubMedCrossRef Alshamrani K, Messina F, Bishop NJ, Offiah AC (2019) Estimating bone mass in children: can bone health index replace dual energy X-ray absorptiometry? Pediatr Radiol 49:372–378PubMedCrossRef
43.
go back to reference England JR, Gross JS, White EA et al (2018) Detection of traumatic pediatric elbow joint effusion using a deep convolutional neural network. AJR Am J Roentgenol 211:1361–1368PubMedCrossRef England JR, Gross JS, White EA et al (2018) Detection of traumatic pediatric elbow joint effusion using a deep convolutional neural network. AJR Am J Roentgenol 211:1361–1368PubMedCrossRef
44.
go back to reference Rayan JC, Reddy N, Kan JH et al (2019) Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol Artif Intell 1:e180015PubMedPubMedCentralCrossRef Rayan JC, Reddy N, Kan JH et al (2019) Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol Artif Intell 1:e180015PubMedPubMedCentralCrossRef
45.
go back to reference Choi JW, Cho YJ, Lee S et al (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Investig Radiol 55:101–110CrossRef Choi JW, Cho YJ, Lee S et al (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Investig Radiol 55:101–110CrossRef
46.
go back to reference Kim DH, MacKinnon T (2018) Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445PubMedCrossRef Kim DH, MacKinnon T (2018) Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445PubMedCrossRef
47.
go back to reference Yu JS, Yu SM, Erdal BS et al (2020) Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept. Clin Radiol 75:237.e1–237.e9CrossRef Yu JS, Yu SM, Erdal BS et al (2020) Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept. Clin Radiol 75:237.e1–237.e9CrossRef
48.
go back to reference Budnik M, Krawczyk B (2013) On optimal settings of classification tree ensembles for medical decision support. Health Informatics J 19:3–15PubMedCrossRef Budnik M, Krawczyk B (2013) On optimal settings of classification tree ensembles for medical decision support. Health Informatics J 19:3–15PubMedCrossRef
49.
go back to reference Bertsimas D, Masiakos PT, Mylonas KS, Wiberg H (2019) Prediction of cervical spine injury in young pediatric patients: an optimal trees artificial intelligence approach. J Pediatr Surg 54:2353–2357PubMedCrossRef Bertsimas D, Masiakos PT, Mylonas KS, Wiberg H (2019) Prediction of cervical spine injury in young pediatric patients: an optimal trees artificial intelligence approach. J Pediatr Surg 54:2353–2357PubMedCrossRef
50.
go back to reference McAllister AS, Nagaraj U, Radhakrishnan R (2019) Emergent imaging of pediatric cervical spine trauma. Radiographics 39:1126–1142PubMedCrossRef McAllister AS, Nagaraj U, Radhakrishnan R (2019) Emergent imaging of pediatric cervical spine trauma. Radiographics 39:1126–1142PubMedCrossRef
51.
go back to reference Adiotomre E, Summers L, Allison A et al (2016) Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children. Eur Radiol 27:2188–2199PubMedPubMedCentralCrossRef Adiotomre E, Summers L, Allison A et al (2016) Diagnostic accuracy of DXA compared to conventional spine radiographs for the detection of vertebral fractures in children. Eur Radiol 27:2188–2199PubMedPubMedCentralCrossRef
52.
go back to reference Crabtree N, Chapman S, Högler W et al (2017) Vertebral fractures assessment in children: evaluation of DXA imaging versus conventional spine radiography. Bone 97:168–174PubMedCrossRef Crabtree N, Chapman S, Högler W et al (2017) Vertebral fractures assessment in children: evaluation of DXA imaging versus conventional spine radiography. Bone 97:168–174PubMedCrossRef
53.
go back to reference Alqahtani FF, Offiah AC (2019) Diagnosis of vertebral fractures in children. Pediatr Radiol 49:283–296PubMedCrossRef Alqahtani FF, Offiah AC (2019) Diagnosis of vertebral fractures in children. Pediatr Radiol 49:283–296PubMedCrossRef
54.
go back to reference Alqahtani FF, Messina F, Kruger E et al (2017) Evaluation of a semi-automated software program for the identification of vertebral fractures in children. Clin Radiol 72:904e20CrossRef Alqahtani FF, Messina F, Kruger E et al (2017) Evaluation of a semi-automated software program for the identification of vertebral fractures in children. Clin Radiol 72:904e20CrossRef
55.
go back to reference Alqahtani FF, Messina F, Offiah AC (2019) Are semi-automated software program [sic] designed for adults accurate for the identification of vertebral fractures in children? Eur Radiol 29:6780–6789PubMedPubMedCentralCrossRef Alqahtani FF, Messina F, Offiah AC (2019) Are semi-automated software program [sic] designed for adults accurate for the identification of vertebral fractures in children? Eur Radiol 29:6780–6789PubMedPubMedCentralCrossRef
56.
go back to reference Genant HK, Wu C, van Kuijk C et al (1993) Vertebal fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRef Genant HK, Wu C, van Kuijk C et al (1993) Vertebal fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRef
57.
go back to reference Alqahtani FF, Crabtree NJ, Bromiley PA et al (2020) Diagnostic performance of morphometric vertebral fracture analysis (MXA) in children using a 33-point software program. Bone 133:115249PubMedCrossRef Alqahtani FF, Crabtree NJ, Bromiley PA et al (2020) Diagnostic performance of morphometric vertebral fracture analysis (MXA) in children using a 33-point software program. Bone 133:115249PubMedCrossRef
58.
go back to reference Paddock M, Sprigg A, Offiah AC (2017) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 1: initial considerations and appendicular skeleton. Clin Radiol 72:179–188PubMedCrossRef Paddock M, Sprigg A, Offiah AC (2017) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 1: initial considerations and appendicular skeleton. Clin Radiol 72:179–188PubMedCrossRef
59.
go back to reference Paddock M, Sprigg A, Offiah AC (2017) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 2: axial skeleton and differential diagnoses. Clin Radiol 72:189–201PubMedCrossRef Paddock M, Sprigg A, Offiah AC (2017) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 2: axial skeleton and differential diagnoses. Clin Radiol 72:189–201PubMedCrossRef
61.
go back to reference Offiah AC, Adamsbaum C, van Rijn RR (2014) ESPR adopts British guidelines for imaging in suspeted non-accidental injury as the European standard. Pediatr Radiol 44:1338PubMedCrossRef Offiah AC, Adamsbaum C, van Rijn RR (2014) ESPR adopts British guidelines for imaging in suspeted non-accidental injury as the European standard. Pediatr Radiol 44:1338PubMedCrossRef
62.
63.
go back to reference Weikert T, Noordtzij LA, Bremerich J et al (2020) Assessment of a deep learning algorithm for detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21:891–899PubMedCrossRef Weikert T, Noordtzij LA, Bremerich J et al (2020) Assessment of a deep learning algorithm for detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21:891–899PubMedCrossRef
64.
go back to reference Jin L, Yang J, Kuang K et al (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMed 62:103106CrossRef Jin L, Yang J, Kuang K et al (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMed 62:103106CrossRef
65.
go back to reference Zhang B, Jia C, Wu R et al (2021) Improving rib fracture detection accuracy and reading efficiency with deep-learning-based detection software: a clinical evaluation. Br J Radiol 94:20200870PubMedCrossRef Zhang B, Jia C, Wu R et al (2021) Improving rib fracture detection accuracy and reading efficiency with deep-learning-based detection software: a clinical evaluation. Br J Radiol 94:20200870PubMedCrossRef
66.
go back to reference Zhou QQ, Tang W, Wang J et al (2020) Automatic detection and classification of rib fractures based on patients’ CT images and clinical information via convolutional neural network. Eur Radiol 31:3815–3825PubMedCrossRef Zhou QQ, Tang W, Wang J et al (2020) Automatic detection and classification of rib fractures based on patients’ CT images and clinical information via convolutional neural network. Eur Radiol 31:3815–3825PubMedCrossRef
68.
go back to reference Offiah A, Hume J, Bamsey I et al (2011) ELECTRICA: electronic knowledge base for clinical care, teaching and research in child abuse. Pediatr Radiol 41:1433–1439PubMedCrossRef Offiah A, Hume J, Bamsey I et al (2011) ELECTRICA: electronic knowledge base for clinical care, teaching and research in child abuse. Pediatr Radiol 41:1433–1439PubMedCrossRef
69.
go back to reference Li Q, Zhong L, Huang H et al (2019) Auxillary diagnosis of developmental dysplasia of the hip by automated detection of Sharp’s angle on standardized anteroposterior pelvic radiographs. Medicine 98:e18500PubMedPubMedCentralCrossRef Li Q, Zhong L, Huang H et al (2019) Auxillary diagnosis of developmental dysplasia of the hip by automated detection of Sharp’s angle on standardized anteroposterior pelvic radiographs. Medicine 98:e18500PubMedPubMedCentralCrossRef
70.
go back to reference Zhang SC, Sun J, Liu CB et al (2020) Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip. Bone Joint J 11:1574–1581CrossRef Zhang SC, Sun J, Liu CB et al (2020) Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip. Bone Joint J 11:1574–1581CrossRef
71.
go back to reference Yang J, Zhang K, Fan H et al (2019) Development and validation of deep learning algorithms for scoliosis screening using back images. Comm Biol 2:390CrossRef Yang J, Zhang K, Fan H et al (2019) Development and validation of deep learning algorithms for scoliosis screening using back images. Comm Biol 2:390CrossRef
72.
go back to reference Galbusera F, Niemeyer F, Wilke HJ et al (2019) Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J 28:951–960PubMedCrossRef Galbusera F, Niemeyer F, Wilke HJ et al (2019) Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J 28:951–960PubMedCrossRef
73.
go back to reference Watanabe K, Aoki Y, Matsumoto M (2019) An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images. Neurospine 16:697–702PubMedPubMedCentralCrossRef Watanabe K, Aoki Y, Matsumoto M (2019) An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images. Neurospine 16:697–702PubMedPubMedCentralCrossRef
74.
go back to reference Garcia-Cano E, Arámbula Cosio F, Duong L et al (2018) Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression. Comput Biol Med 103:34–43PubMedCrossRef Garcia-Cano E, Arámbula Cosio F, Duong L et al (2018) Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression. Comput Biol Med 103:34–43PubMedCrossRef
75.
76.
go back to reference Vergari C, Skalli W, Gajny L (2020) A convolutional neural network to detect scoliosis treatment in radiographs. Int J Comput Assist Radiol Surg 15:1069–1074PubMedCrossRef Vergari C, Skalli W, Gajny L (2020) A convolutional neural network to detect scoliosis treatment in radiographs. Int J Comput Assist Radiol Surg 15:1069–1074PubMedCrossRef
77.
go back to reference Aubert B, Vazquez C, Cresson T et al (2019) Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans Med Imaging 38:2796–2806PubMedCrossRef Aubert B, Vazquez C, Cresson T et al (2019) Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans Med Imaging 38:2796–2806PubMedCrossRef
78.
go back to reference Zheng Q, Shellikeri S, Huang H et al (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296:152–158PubMedCrossRef Zheng Q, Shellikeri S, Huang H et al (2020) Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology 296:152–158PubMedCrossRef
79.
go back to reference Bhalodia R, Dvoracek LA, Ayyash AM et al (2020) Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J Craniofac Surg 31:697–701PubMedPubMedCentralCrossRef Bhalodia R, Dvoracek LA, Ayyash AM et al (2020) Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J Craniofac Surg 31:697–701PubMedPubMedCentralCrossRef
80.
go back to reference Ha CW, Kim SH, Lee DH et al (2020) Predictive validity of radiographic signs of complete discoid lateral menisci in children using machine learning techniques. J Orthop Res 38:1279–1288PubMedCrossRef Ha CW, Kim SH, Lee DH et al (2020) Predictive validity of radiographic signs of complete discoid lateral menisci in children using machine learning techniques. J Orthop Res 38:1279–1288PubMedCrossRef
81.
go back to reference Zhang C, Whitney DG, Singh H et al (2019) Statistical models to assess leg muscle mass in ambulatory children with spastic cerebral palsy using dual energy X-ray absorptiometry. J Clin Densitom 22:391–400PubMedCrossRef Zhang C, Whitney DG, Singh H et al (2019) Statistical models to assess leg muscle mass in ambulatory children with spastic cerebral palsy using dual energy X-ray absorptiometry. J Clin Densitom 22:391–400PubMedCrossRef
82.
go back to reference Yune S, Lee H, Kim M et al (2019) Beyond human perception: sexual dimorphism in hand and wrist radiographs is discernable by a deep learning model. J Digit Imaging 32:665–671PubMedCrossRef Yune S, Lee H, Kim M et al (2019) Beyond human perception: sexual dimorphism in hand and wrist radiographs is discernable by a deep learning model. J Digit Imaging 32:665–671PubMedCrossRef
83.
go back to reference Offiah AC, Hall CM (2019) The radiologic diagnosis of skeletal dysplasias: past, present and future. Pediatr Radiol 50:1650–1657CrossRef Offiah AC, Hall CM (2019) The radiologic diagnosis of skeletal dysplasias: past, present and future. Pediatr Radiol 50:1650–1657CrossRef
85.
go back to reference Groza T, Hunter J, Zankl A (2012) The bone dysplasia ontology: integrating genotype and phenotype information in the skeletal dysplasia domain. BMC Bioinforma 13:50CrossRef Groza T, Hunter J, Zankl A (2012) The bone dysplasia ontology: integrating genotype and phenotype information in the skeletal dysplasia domain. BMC Bioinforma 13:50CrossRef
87.
go back to reference Offiah A, Lanfranchi V, Davila Garcia M et al (2021) Image analysis and machine learning for skeletal dysplasias recognition. Poster presentation at the Child Health Technology Conference, 2–5 Mar 2021 Offiah A, Lanfranchi V, Davila Garcia M et al (2021) Image analysis and machine learning for skeletal dysplasias recognition. Poster presentation at the Child Health Technology Conference, 2–5 Mar 2021
Metadata
Title
Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology
Author
Amaka C. Offiah
Publication date
16-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2022
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05130-8

Other articles of this Issue 11/2022

Pediatric Radiology 11/2022 Go to the issue

Artificial intelligence in pediatric radiology

The role of artificial intelligence in paediatric neuroradiology