Skip to main content
Top
Published in: Pediatric Radiology 5/2020

01-05-2020 | Positron Emission Tomography | Review

Clinical pediatric positron emission tomography/magnetic resonance program: a guide to successful implementation

Authors: Sandra Saade-Lemus, Elad Nevo, Iman Soliman, Hansel J. Otero, Ralph W. Magee, Elizabeth T. Drum, Lisa J. States

Published in: Pediatric Radiology | Issue 5/2020

Login to get access

Abstract

Children with malignancies undergo recurrent imaging as part of tumor diagnosis, staging and therapy response assessment. Simultaneous positron emission tomography (PET) and magnetic resonance (MR) allows for decreased radiation exposure and acts as a one-stop shop for disease in which MR imaging is required. Nevertheless, PET/MR is still less readily available than PET/CT across institutions. This article serves as a guide to successful implementation of a clinical pediatric PET/MR program based on our extensive clinical experience. Challenges include making scanners more affordable and increasing patient throughput by decreasing total scan time. With improvements in workflow and robust acquisition protocols, PET/MR imaging is expected to play an increasingly important role in pediatric oncology.
Literature
1.
go back to reference Cheng G, Servaes S, Zhuang H (2013) Value of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan versus diagnostic contrast computed tomography in initial staging of pediatric patients with lymphoma. Leuk Lymphoma 54:737–742PubMedCrossRef Cheng G, Servaes S, Zhuang H (2013) Value of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan versus diagnostic contrast computed tomography in initial staging of pediatric patients with lymphoma. Leuk Lymphoma 54:737–742PubMedCrossRef
2.
go back to reference London K, Cross S, Onikul E et al (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284PubMedCrossRef London K, Cross S, Onikul E et al (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284PubMedCrossRef
3.
go back to reference Jadvar H, Connolly LP, Fahey FH, Shulkin BL (2007) PET and PET/CT in pediatric oncology. Semin Nucl Med 37:316–331PubMedCrossRef Jadvar H, Connolly LP, Fahey FH, Shulkin BL (2007) PET and PET/CT in pediatric oncology. Semin Nucl Med 37:316–331PubMedCrossRef
4.
go back to reference Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686PubMedCrossRef Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686PubMedCrossRef
5.
go back to reference Krille L, Zeeb H, Jahnen A et al (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51:103–111PubMedCrossRef Krille L, Zeeb H, Jahnen A et al (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51:103–111PubMedCrossRef
6.
go back to reference Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707PubMedPubMedCentralCrossRef Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707PubMedPubMedCentralCrossRef
7.
go back to reference Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedPubMedCentralCrossRef Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedPubMedCentralCrossRef
9.
go back to reference Parisi MT, Bermo MS, Alessio AM et al (2017) Optimization of pediatric PET/CT. Semin Nucl Med 47:258–274PubMedCrossRef Parisi MT, Bermo MS, Alessio AM et al (2017) Optimization of pediatric PET/CT. Semin Nucl Med 47:258–274PubMedCrossRef
10.
go back to reference Ponisio MR, McConathy J, Laforest R, Khanna G (2016) Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol 46:1258–1268 Ponisio MR, McConathy J, Laforest R, Khanna G (2016) Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol 46:1258–1268
11.
go back to reference Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231PubMedCrossRef Schafer JF, Gatidis S, Schmidt H et al (2014) Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 273:220–231PubMedCrossRef
12.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef
13.
14.
go back to reference Bosch de Basea M, Pearce MS, Kesminiene A et al (2015) EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT. J Radiol Prot 35:611–628PubMedCrossRef Bosch de Basea M, Pearce MS, Kesminiene A et al (2015) EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT. J Radiol Prot 35:611–628PubMedCrossRef
15.
go back to reference Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875PubMedPubMedCentralCrossRef Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875PubMedPubMedCentralCrossRef
16.
17.
go back to reference Delso G, Fürst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922PubMedCrossRef Delso G, Fürst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922PubMedCrossRef
19.
go back to reference Sher AC, Orth R, McClain K et al (2017) PET/MR in the assessment of pediatric histiocytoses: a comparison to PET/CT. Clin Nucl Med 42:582–588PubMedCrossRef Sher AC, Orth R, McClain K et al (2017) PET/MR in the assessment of pediatric histiocytoses: a comparison to PET/CT. Clin Nucl Med 42:582–588PubMedCrossRef
20.
go back to reference Lyons K, Seghers V, Sorensen JI et al (2015) Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in a tertiary pediatric hospital: a prospective study. AJR Am J Roentgenol 205:1094–1101PubMedCrossRef Lyons K, Seghers V, Sorensen JI et al (2015) Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in a tertiary pediatric hospital: a prospective study. AJR Am J Roentgenol 205:1094–1101PubMedCrossRef
21.
go back to reference Rauscher I, Beer AJ, Schaeffeler C et al (2015) Evaluation of 18F-fluoride PET/MR and PET/CT in patients with foot pain of unclear cause. J Nucl Med 56:430–435PubMedCrossRef Rauscher I, Beer AJ, Schaeffeler C et al (2015) Evaluation of 18F-fluoride PET/MR and PET/CT in patients with foot pain of unclear cause. J Nucl Med 56:430–435PubMedCrossRef
23.
go back to reference Oldan JD, Shin HW, Khandani AH et al (2018) Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 61:128–134PubMedCrossRef Oldan JD, Shin HW, Khandani AH et al (2018) Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 61:128–134PubMedCrossRef
24.
25.
go back to reference Uslu L, Donig J, Link M et al (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286PubMedCrossRef Uslu L, Donig J, Link M et al (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286PubMedCrossRef
26.
go back to reference Buchanan M, Marsden PK, Mielke CH et al (1996) A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 43:2044–2048CrossRef Buchanan M, Marsden PK, Mielke CH et al (1996) A system to obtain radiotracer uptake data simultaneously with NMR spectra in a high field magnet. IEEE Trans Nucl Sci 43:2044–2048CrossRef
27.
go back to reference Garlick PB, Marsden PK, Cave AC et al (1998) PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 10:138–142CrossRef Garlick PB, Marsden PK, Cave AC et al (1998) PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 10:138–142CrossRef
28.
go back to reference Shao Y, Cherry SR, Farahani K et al (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970PubMedCrossRef Shao Y, Cherry SR, Farahani K et al (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970PubMedCrossRef
29.
go back to reference Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36:S56–S68PubMedCrossRef Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36:S56–S68PubMedCrossRef
30.
go back to reference Sauter AW, Wehrl HF, Kolb A et al (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16:508–515PubMedCrossRef Sauter AW, Wehrl HF, Kolb A et al (2010) Combined PET/MRI: one step further in multimodality imaging. Trends Mol Med 16:508–515PubMedCrossRef
31.
go back to reference Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Investig Radiol 44:683–690CrossRef Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Investig Radiol 44:683–690CrossRef
32.
go back to reference Catalano OA, Rosen BR, Sahani DV et al (2013) Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients — a hypothesis-generating exploratory study. Radiology 269:857–869PubMedCrossRef Catalano OA, Rosen BR, Sahani DV et al (2013) Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients — a hypothesis-generating exploratory study. Radiology 269:857–869PubMedCrossRef
33.
go back to reference Ishii S, Shimao D, Hara T et al (2016) Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med 30:225–233PubMedCrossRef Ishii S, Shimao D, Hara T et al (2016) Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med 30:225–233PubMedCrossRef
34.
go back to reference Melsaether AN, Raad RA, Pujara AC et al (2016) Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology 281:193–202PubMedCrossRef Melsaether AN, Raad RA, Pujara AC et al (2016) Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology 281:193–202PubMedCrossRef
35.
go back to reference Lee SM, Goo JM, Park CM et al (2016) Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol 26:3850–3857PubMedCrossRef Lee SM, Goo JM, Park CM et al (2016) Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol 26:3850–3857PubMedCrossRef
36.
go back to reference Berzaczy D, Giraudo C, Haug AR et al (2017) Whole-body 68Ga-DOTANOC PET/MRI versus 68Ga-DOTANOC PET/CT in patients with neuroendocrine tumors: a prospective study in 28 patients. Clin Nucl Med 42:669–674PubMedPubMedCentralCrossRef Berzaczy D, Giraudo C, Haug AR et al (2017) Whole-body 68Ga-DOTANOC PET/MRI versus 68Ga-DOTANOC PET/CT in patients with neuroendocrine tumors: a prospective study in 28 patients. Clin Nucl Med 42:669–674PubMedPubMedCentralCrossRef
37.
go back to reference Rauscher I, Eiber M, Fürst S et al (2014) PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 55:724–729PubMedCrossRef Rauscher I, Eiber M, Fürst S et al (2014) PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 55:724–729PubMedCrossRef
38.
go back to reference Stolzmann P, Veit-Haibach P, Chuck N et al (2013) Detection rate, location, and size of pulmonary nodules in trimodality PET/CT-MR: comparison of low-dose CT and Dixon-based MR imaging. Investig Radiol 48:241–246CrossRef Stolzmann P, Veit-Haibach P, Chuck N et al (2013) Detection rate, location, and size of pulmonary nodules in trimodality PET/CT-MR: comparison of low-dose CT and Dixon-based MR imaging. Investig Radiol 48:241–246CrossRef
39.
go back to reference Chandarana H, Heacock L, Rakheja R et al (2013) Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 268:874–881PubMedCrossRef Chandarana H, Heacock L, Rakheja R et al (2013) Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 268:874–881PubMedCrossRef
40.
go back to reference Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927PubMedCrossRef Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927PubMedCrossRef
41.
go back to reference Theodore WH (1989) The role of fluorodeoxyglucose-positron emission tomography in the evaluation of seizure disorders. Semin Neurol 9:301–306PubMedCrossRef Theodore WH (1989) The role of fluorodeoxyglucose-positron emission tomography in the evaluation of seizure disorders. Semin Neurol 9:301–306PubMedCrossRef
42.
go back to reference Todd MM, Weeks J (1996) Comparative effects of propofol, pentobarbital, and isoflurane on cerebral blood flow and blood volume. J Neurosurg Anesthesiol 8:296–303PubMedCrossRef Todd MM, Weeks J (1996) Comparative effects of propofol, pentobarbital, and isoflurane on cerebral blood flow and blood volume. J Neurosurg Anesthesiol 8:296–303PubMedCrossRef
43.
go back to reference Gelfand MJ, O'hara SM, Curtwright LA, Maclean JR (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990PubMedCrossRef Gelfand MJ, O'hara SM, Curtwright LA, Maclean JR (2005) Pre-medication to block [(18)F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol 35:984–990PubMedCrossRef
44.
go back to reference Niederle B, Pape UF, Costa F et al (2016) ENETS consensus guidelines update for neuroendocrine neoplasms of the jejunum and ileum. Neuroendocrinology 103:125–138PubMedCrossRef Niederle B, Pape UF, Costa F et al (2016) ENETS consensus guidelines update for neuroendocrine neoplasms of the jejunum and ileum. Neuroendocrinology 103:125–138PubMedCrossRef
45.
go back to reference Falconi M, Eriksson B, Kaltsas G et al (2016) ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103:153–171PubMedCrossRef Falconi M, Eriksson B, Kaltsas G et al (2016) ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology 103:153–171PubMedCrossRef
Metadata
Title
Clinical pediatric positron emission tomography/magnetic resonance program: a guide to successful implementation
Authors
Sandra Saade-Lemus
Elad Nevo
Iman Soliman
Hansel J. Otero
Ralph W. Magee
Elizabeth T. Drum
Lisa J. States
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 5/2020
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-019-04578-z

Other articles of this Issue 5/2020

Pediatric Radiology 5/2020 Go to the issue

Hermes

Hermes