Skip to main content
Top
Published in: Pediatric Radiology 1/2014

01-01-2014 | Original Article

Diffusion tensor imaging and tractography of the kidney in children: feasibility and preliminary experience

Authors: Camilo Jaimes, Kassa Darge, Dmitry Khrichenko, Robert H. Carson, Jeffrey I. Berman

Published in: Pediatric Radiology | Issue 1/2014

Login to get access

Abstract

Background

Functional magnetic resonance urography (fMRU) provides morphological and functional information based on perfusion. Diffusion tensor imaging (DTI) complements fMRU by measuring renal microstructure and provides insight into the relationship between renal structure and function.

Objective

To evaluate the feasibility and utility of renal DTI and tractography in the setting of fMRU in children.

Materials and methods

We prospectively enrolled 9 children (6 boys, 3 girls) with a mean age of 4.3 years (range 6 months to 14.8 years). All children were examined with MRI at 3.0 tesla. DTI was acquired with an echo-planar sequence (TR/TE = 2,300/69 ms, b = 300 s/mm2) with 12 non-collinear directions and 3 signal averages. Functional MRU results were used to group the moieties as normal or abnormal. Regions of interest were placed in the medulla and cortex to measure DTI parameters of microstructure. DTI tractography measures of parenchymal volume were compared to fMRU-derived volumes.

Results

We analyzed 19 moieties (13 normal; 6 abnormal). Tractography of normal moieties showed numerous tracks with a radial arrangement and convergence into pyramids. Abnormal moieties did not show the radial arrangement or converging architecture and had tracks that were loosely arranged and left hollow spaces. Tractography volume correlated with MRU parenchymal volume (r 2 = 0.93, P < 0.005) and abnormal moieties exhibited greater tractography volume than normal moieties (P < 0.005). Tractography volume also correlated with age of the child (P < 0.001). In normal moieties, the medulla had higher fractional anisotropy (0.401 +/−0.05) than the cortex (0.183 +/− 0.03) (P < 0.001); fractional anisotropy in these regions did not change with age (P > 0.1). There were no differences in apparent diffusion coefficient values between the cortex and medulla (P > 0.5). We observed a trend of increasing apparent diffusion coefficient values with age in the cortex and medulla, which did not reach statistical significance (cortex: r2 = 0.21, P > 0.1; medulla: r2 = 0.135, P > 0.1).

Conclusion

DTI with tractography is feasible in children and can complement the functional information obtained from fMRU.
Literature
1.
go back to reference Romao RL, Farhat WA, Pippi Salle JL et al (2012) Early postoperative ultrasound after open pyeloplasty in children with prenatal hydronephrosis helps identify low risk of recurrent obstruction. J Urol 188:2347–2353PubMedCrossRef Romao RL, Farhat WA, Pippi Salle JL et al (2012) Early postoperative ultrasound after open pyeloplasty in children with prenatal hydronephrosis helps identify low risk of recurrent obstruction. J Urol 188:2347–2353PubMedCrossRef
2.
go back to reference Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76:337–347PubMedCrossRef Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76:337–347PubMedCrossRef
3.
go back to reference Fukuda Y, Ohashi I, Hanafusa K et al (2000) Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 11:156–160PubMedCrossRef Fukuda Y, Ohashi I, Hanafusa K et al (2000) Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imaging 11:156–160PubMedCrossRef
4.
go back to reference Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49PubMedCrossRef Ries M, Jones RA, Basseau F et al (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49PubMedCrossRef
5.
go back to reference Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468–480PubMedCrossRef Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468–480PubMedCrossRef
6.
go back to reference Poretti A, Meoded A, Rossi A et al (2013) Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 43:28–54PubMedCrossRef Poretti A, Meoded A, Rossi A et al (2013) Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 43:28–54PubMedCrossRef
7.
go back to reference Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla – feasibility, protocol evaluation and comparison to 1.5 tesla. Invest Radiol 45:245–254PubMedCrossRef Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla – feasibility, protocol evaluation and comparison to 1.5 tesla. Invest Radiol 45:245–254PubMedCrossRef
8.
go back to reference Gurses B, Kilickesmez O, Tasdelen N et al (2011) Diffusion tensor imaging of the kidney at 3 tesla MRI: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol 17:317–322PubMed Gurses B, Kilickesmez O, Tasdelen N et al (2011) Diffusion tensor imaging of the kidney at 3 tesla MRI: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol 17:317–322PubMed
9.
go back to reference Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29:736–744PubMedCrossRef Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29:736–744PubMedCrossRef
10.
go back to reference Jones RA, Grattan-Smith JD (2003) Age dependence of the renal apparent diffusion coefficient in children. Pediatr Radiol 33:850–854PubMedCrossRef Jones RA, Grattan-Smith JD (2003) Age dependence of the renal apparent diffusion coefficient in children. Pediatr Radiol 33:850–854PubMedCrossRef
11.
go back to reference Gaudiano C, Clementi V, Busato F et al (2011) Renal diffusion tensor imaging: is it possible to define the tubular pathway? A case report. Magn Reson Imaging 29:1030–1033PubMedCrossRef Gaudiano C, Clementi V, Busato F et al (2011) Renal diffusion tensor imaging: is it possible to define the tubular pathway? A case report. Magn Reson Imaging 29:1030–1033PubMedCrossRef
12.
go back to reference Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482PubMedCrossRef Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482PubMedCrossRef
13.
go back to reference Wu M, Lin Y, Shieh C et al (2011) Measuring anisotropic diffusion in kidney using MRI. Acad Radiol 18:1168–1174PubMedCrossRef Wu M, Lin Y, Shieh C et al (2011) Measuring anisotropic diffusion in kidney using MRI. Acad Radiol 18:1168–1174PubMedCrossRef
14.
go back to reference Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction – initial results. Eur Radiol 21:2427–2433PubMedCrossRef Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction – initial results. Eur Radiol 21:2427–2433PubMedCrossRef
15.
go back to reference Khrichenko D, Darge K (2010) Functional analysis in MR urography – made simple. Pediatr Radiol 40:182–199PubMedCrossRef Khrichenko D, Darge K (2010) Functional analysis in MR urography – made simple. Pediatr Radiol 40:182–199PubMedCrossRef
16.
go back to reference Wang R, Brenner T, Sorensen AG et al (2007) Diffusion toolkit: a software package for diffusion imaging data processing. Proc Intl Soc Mag Reson Med 15:3720 Wang R, Brenner T, Sorensen AG et al (2007) Diffusion toolkit: a software package for diffusion imaging data processing. Proc Intl Soc Mag Reson Med 15:3720
17.
go back to reference Berman JI, Mukherjee P, Partridge SC et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871PubMedCrossRef Berman JI, Mukherjee P, Partridge SC et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871PubMedCrossRef
18.
go back to reference Hagmann P, Jonasson L, Maeder P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:S205–223PubMedCrossRef Hagmann P, Jonasson L, Maeder P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:S205–223PubMedCrossRef
19.
go back to reference Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19PubMedCrossRef Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19PubMedCrossRef
20.
go back to reference Kido A, Kataoka M, Yamamoto A et al (2010) Diffusion tensor MRI of the kidney at 3.0 and 1.5 tesla. Acta Radiol 51:1059–1063PubMedCrossRef Kido A, Kataoka M, Yamamoto A et al (2010) Diffusion tensor MRI of the kidney at 3.0 and 1.5 tesla. Acta Radiol 51:1059–1063PubMedCrossRef
21.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMed Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMed
22.
go back to reference Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769PubMedCrossRef Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769PubMedCrossRef
24.
go back to reference Hanna MK, Jeffs RD, Sturgess JM et al (1976) Ureteral structure and ultrastructure. Part I. The normal human ureter. J Urol 116:718–724PubMed Hanna MK, Jeffs RD, Sturgess JM et al (1976) Ureteral structure and ultrastructure. Part I. The normal human ureter. J Urol 116:718–724PubMed
25.
go back to reference Schonberg T, Pianka P, Hendler T et al (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111PubMedCrossRef Schonberg T, Pianka P, Hendler T et al (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111PubMedCrossRef
26.
go back to reference Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1, functional assessment. AJR Am J Roentgenol 185:1598–1607PubMedCrossRef Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1, functional assessment. AJR Am J Roentgenol 185:1598–1607PubMedCrossRef
27.
go back to reference Fetterman GH, Shuplock NA, Philipp FJ et al (1965) The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics 35:601–619PubMed Fetterman GH, Shuplock NA, Philipp FJ et al (1965) The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics 35:601–619PubMed
28.
go back to reference Gartner LP, Hiatt JL (2009) Color atlas of histology. Wolters Kluwer Health/Lippincott William & Wilkins, Philadelphia Gartner LP, Hiatt JL (2009) Color atlas of histology. Wolters Kluwer Health/Lippincott William & Wilkins, Philadelphia
29.
go back to reference Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38PubMedCrossRef Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38PubMedCrossRef
30.
go back to reference Ekinci S, Ciftci AO, Atilla P et al (2003) Ureteropelvic junction obstruction causes histologic alterations in contralateral kidney. J Pediatr Surg 38:1650–1655PubMedCrossRef Ekinci S, Ciftci AO, Atilla P et al (2003) Ureteropelvic junction obstruction causes histologic alterations in contralateral kidney. J Pediatr Surg 38:1650–1655PubMedCrossRef
31.
go back to reference Ohba K, Matsuo M, Noguchi M et al (2004) Clinicopathological study of vesicoureteral reflux (VUR)-associated pyelonephritis in renal transplantation. Clin Transplant 11:34–38CrossRef Ohba K, Matsuo M, Noguchi M et al (2004) Clinicopathological study of vesicoureteral reflux (VUR)-associated pyelonephritis in renal transplantation. Clin Transplant 11:34–38CrossRef
32.
go back to reference Thoeny HC, Binser T, Roth B et al (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252:721–728PubMedCrossRef Thoeny HC, Binser T, Roth B et al (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252:721–728PubMedCrossRef
33.
go back to reference Verswijvel G, Vandecaveye V, Gelin G et al (2002) Diffusion-weighted MR imaging in the evaluation of renal infection: preliminary results. JBR-BTR 85:100–103PubMed Verswijvel G, Vandecaveye V, Gelin G et al (2002) Diffusion-weighted MR imaging in the evaluation of renal infection: preliminary results. JBR-BTR 85:100–103PubMed
34.
go back to reference Squillaci E, Manenti G, Di Stefano F et al (2004) Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 23:39–45PubMed Squillaci E, Manenti G, Di Stefano F et al (2004) Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 23:39–45PubMed
35.
go back to reference Yildirim E, Kirbas I, Teksam M et al (2008) Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol 65:148–153PubMedCrossRef Yildirim E, Kirbas I, Teksam M et al (2008) Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol 65:148–153PubMedCrossRef
36.
go back to reference Thoeny HC, De Keyzer F, Oyen RH et al (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917PubMedCrossRef Thoeny HC, De Keyzer F, Oyen RH et al (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917PubMedCrossRef
37.
go back to reference Namimoto T, Yamashita Y, Mitsuzaki K et al (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9:832–837PubMedCrossRef Namimoto T, Yamashita Y, Mitsuzaki K et al (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9:832–837PubMedCrossRef
Metadata
Title
Diffusion tensor imaging and tractography of the kidney in children: feasibility and preliminary experience
Authors
Camilo Jaimes
Kassa Darge
Dmitry Khrichenko
Robert H. Carson
Jeffrey I. Berman
Publication date
01-01-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 1/2014
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-013-2774-2

Other articles of this Issue 1/2014

Pediatric Radiology 1/2014 Go to the issue