Skip to main content
Top
Published in: Pediatric Cardiology 1/2018

01-01-2018 | Original Article

In Silico Analyses Reveal the Relationship Between SIX1/EYA1 Mutations and Conotruncal Heart Defects

Authors: Bojian Li, Lijuan Xu, Nanchao Hong, Sun Chen, Rang Xu

Published in: Pediatric Cardiology | Issue 1/2018

Login to get access

Abstract

Conotruncal heart defects (CTDs) represent a group of severe and complicated congenital cardiovascular malformations and require opportune clinical interventions once diagnosed. Occurrence of CTD is related to the functional abnormality of the second heart field (SHF), and variants of genes which regulate the development of the second heart field have been recognized as the main genetic factors leading to CTDs. Previous studies indicated that transcriptional complex SIX1/EYA1 may contribute to SHF development, and SIX1/EYA1 knockout mice exhibited a series of conotruncal malformations. Here, we recruited and sequenced 600 Chinese conotruncal heart defect patients and 300 controls. We screened out one novel SIX1 mutation (SIX1-K134R) and four EYA1 rare mutations (EYA1-A227T, EYA1-R296H, EYA1-Q397R, EYA1-G426S), all variants were present only in the case cohort, and the mutated sites were highly conserved. We then analyzed mutations by software including Sift, PolyPhen-2, PROVEAN, Mutation Taster, HOPE, and SWISS-PdbViewer. The results showed that the mutations had varying degrees of pathogenic risk, protein properties, spatial conformations, and domain functions which might be altered or influenced. Through biological and in silico analyses, our study suggests an association between SIX1/EYA1 mutations and cardiovascular malformations, SIX1/EYA1 mutations might be partially responsible for CTDs.
Literature
1.
go back to reference De Luca A, Sarkozy A, Ferese R et al (2011) New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet 80:184–190CrossRefPubMed De Luca A, Sarkozy A, Ferese R et al (2011) New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet 80:184–190CrossRefPubMed
2.
go back to reference Bentham J, Bhattacharya S (2008) Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci 1123:10–19CrossRefPubMed Bentham J, Bhattacharya S (2008) Genetic mechanisms controlling cardiovascular development. Ann N Y Acad Sci 1123:10–19CrossRefPubMed
3.
go back to reference Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996CrossRefPubMed Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996CrossRefPubMed
4.
go back to reference Li X, Oghi KA, Zhang J et al (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254CrossRefPubMed Li X, Oghi KA, Zhang J et al (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254CrossRefPubMed
5.
go back to reference Rayapureddi JP, Kattamuri C, Steinmetz BD et al (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298CrossRefPubMed Rayapureddi JP, Kattamuri C, Steinmetz BD et al (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298CrossRefPubMed
6.
go back to reference Vincent C, Kalatzis V, Abdelhak S et al (1997) BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5:242–246PubMed Vincent C, Kalatzis V, Abdelhak S et al (1997) BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet 5:242–246PubMed
7.
go back to reference Wang SH, Wu CC, Lu YC et al (2012) Mutation screening of the EYA1, SIX1, and SIX5 genes in an East Asian cohort with branchio-oto-renal syndrome. Laryngoscope 122:1130–1136CrossRefPubMed Wang SH, Wu CC, Lu YC et al (2012) Mutation screening of the EYA1, SIX1, and SIX5 genes in an East Asian cohort with branchio-oto-renal syndrome. Laryngoscope 122:1130–1136CrossRefPubMed
8.
go back to reference Guo C, Sun Y, Zhou B et al (2011) A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Investig 121:1585–1595CrossRefPubMedPubMedCentral Guo C, Sun Y, Zhou B et al (2011) A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Investig 121:1585–1595CrossRefPubMedPubMedCentral
9.
go back to reference Shimasaki N, Watanabe K, Hara M, Kosaki K (2004) EYA1 mutation in a newborn female presenting with cardiofacial syndrome. Pediatr Cardiol 25:411–413CrossRefPubMed Shimasaki N, Watanabe K, Hara M, Kosaki K (2004) EYA1 mutation in a newborn female presenting with cardiofacial syndrome. Pediatr Cardiol 25:411–413CrossRefPubMed
10.
go back to reference Blue GM, Humphreys D, Szot J et al (2017) The promises and challenges of exome sequencing in familial, non-syndromic congenital heart disease. Int J Cardiol 230:155–163CrossRefPubMed Blue GM, Humphreys D, Szot J et al (2017) The promises and challenges of exome sequencing in familial, non-syndromic congenital heart disease. Int J Cardiol 230:155–163CrossRefPubMed
11.
go back to reference Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH (2017) In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. Comput Biol Chem 68:175–185CrossRefPubMed Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH (2017) In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. Comput Biol Chem 68:175–185CrossRefPubMed
12.
go back to reference Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform 11:548CrossRef Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform 11:548CrossRef
13.
go back to reference Li B, Pu T, Liu Y, Xu Y, Xu R (2017) CITED2 mutations in conserved regions contribute to conotruncal heart defects in Chinese children. DNA Cell Biol. doi:10.1089/dna.2017.3701 Li B, Pu T, Liu Y, Xu Y, Xu R (2017) CITED2 mutations in conserved regions contribute to conotruncal heart defects in Chinese children. DNA Cell Biol. doi:10.​1089/​dna.​2017.​3701
14.
go back to reference Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900CrossRefPubMed Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900CrossRefPubMed
15.
go back to reference Nakajima Y (2010) Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit Anom 50:8–14CrossRef Nakajima Y (2010) Second lineage of heart forming region provides new understanding of conotruncal heart defects. Congenit Anom 50:8–14CrossRef
16.
go back to reference Ilagan R, Abu-Issa R, Brown D et al (2006) Fgf8 is required for anterior heart field development. Development 133:2435–2445CrossRefPubMed Ilagan R, Abu-Issa R, Brown D et al (2006) Fgf8 is required for anterior heart field development. Development 133:2435–2445CrossRefPubMed
17.
go back to reference Pacheco-Leyva I, Matias AC, Oliveira DV et al (2016) CITED2 cooperates with ISL1 and promotes cardiac differentiation of mouse embryonic stem cells. Stem Cell Rep 7:1037–1049CrossRef Pacheco-Leyva I, Matias AC, Oliveira DV et al (2016) CITED2 cooperates with ISL1 and promotes cardiac differentiation of mouse embryonic stem cells. Stem Cell Rep 7:1037–1049CrossRef
18.
go back to reference Baldini A, Fulcoli FG, Illingworth E (2017) Tbx1: transcriptional and developmental functions. Curr Top Dev Biol 122:223–243CrossRefPubMed Baldini A, Fulcoli FG, Illingworth E (2017) Tbx1: transcriptional and developmental functions. Curr Top Dev Biol 122:223–243CrossRefPubMed
19.
go back to reference Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124:219–231PubMed Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124:219–231PubMed
20.
go back to reference Chen B, Kim EH, Xu PX (2009) Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 326:75–85CrossRefPubMed Chen B, Kim EH, Xu PX (2009) Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 326:75–85CrossRefPubMed
21.
go back to reference Rayapureddi JP, Hegde RS (2006) Branchio-oto-renal syndrome associated mutations in eyes absent 1 result in loss of phosphatase activity. FEBS Lett 580:3853–3859CrossRefPubMed Rayapureddi JP, Hegde RS (2006) Branchio-oto-renal syndrome associated mutations in eyes absent 1 result in loss of phosphatase activity. FEBS Lett 580:3853–3859CrossRefPubMed
Metadata
Title
In Silico Analyses Reveal the Relationship Between SIX1/EYA1 Mutations and Conotruncal Heart Defects
Authors
Bojian Li
Lijuan Xu
Nanchao Hong
Sun Chen
Rang Xu
Publication date
01-01-2018
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 1/2018
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-017-1744-0

Other articles of this Issue 1/2018

Pediatric Cardiology 1/2018 Go to the issue