Skip to main content
Top
Published in: Pediatric Cardiology 5/2017

01-06-2017 | Original Article

MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children

Authors: Ma. C. Sánchez-Gómez, K. A. García-Mejía, M. Pérez-Díaz Conti, G. Díaz-Rosas, I. Palma-Lara, R. Sánchez-Urbina, M. Klünder-Klünder, J. A. Botello-Flores, N. A. Balderrábano- Saucedo, A. Contreras-Ramos

Published in: Pediatric Cardiology | Issue 5/2017

Login to get access

Abstract

Complex congenital heart disease (CHD) affects cardiac blood flow, generating a pressure overload in the compromised ventricles and provoking hypertrophy that over time will induce myocardial dysfunction and cause a potential risk of imminent death. Therefore, the early diagnosis of complex CHD is paramount during the first year of life, with surgical treatment of patients favoring survival. In the present study, we analyzed cardiac tissue and plasma of children with cardiac hypertrophy (CH) secondary to CHD for the expression of 11 miRNAs specific to CH in adults. The results were compared with the miRNA expression patterns in tissue and blood of healthy children. In this way, we determined that miRNAs 1, 18b, 21, 23b, 133a, 195, and 208b constitute the expression profile of the cardiac tissue of children with CHD. Meanwhile, miRNAs 21, 23a, 23b, and 24 can be considered specific biomarkers for the diagnosis of CH in infants with CHD. These results suggest that CH secondary to CHD in children differs in its mechanism from that described for adult hypertrophy, offering a new perspective to study the development of this pathology and to determine the potential of hypertrophic miRNAs to be biomarkers for early CH.
Literature
1.
go back to reference Allen HD, Driscoll DJ, Shaddy RE, Feltes TF (2013) Moss & adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. Wolters Kluwer Health, Philadelphia Allen HD, Driscoll DJ, Shaddy RE, Feltes TF (2013) Moss & adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. Wolters Kluwer Health, Philadelphia
3.
go back to reference Hoffman JI, Christianson R (1978) Congenital heart disease in a cohort of 19,502 births with long-term follow-up. Am J Cardiol 42(4):641–647CrossRefPubMed Hoffman JI, Christianson R (1978) Congenital heart disease in a cohort of 19,502 births with long-term follow-up. Am J Cardiol 42(4):641–647CrossRefPubMed
4.
go back to reference Yang Q, Chen H, Correa A, Devine O, Mathews TJ, Honein MA (2006) Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Res Part A 76(10):706–713. doi:10.1002/bdra.20308 CrossRef Yang Q, Chen H, Correa A, Devine O, Mathews TJ, Honein MA (2006) Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Res Part A 76(10):706–713. doi:10.​1002/​bdra.​20308 CrossRef
6.
go back to reference de la Cruz MV, Markwald RR, Krug EL, Rumenoff L, Sanchez Gomez C, Sadowinski S, Galicia TD, Gomez F, Salazar Garcia M, Villavicencio Guzman L, Reyes Angeles L, Moreno-Rodriguez RA (2001) Living morphogenesis of the ventricles and congenital pathology of their component parts. Cardiol Young 11(6):588–600CrossRefPubMed de la Cruz MV, Markwald RR, Krug EL, Rumenoff L, Sanchez Gomez C, Sadowinski S, Galicia TD, Gomez F, Salazar Garcia M, Villavicencio Guzman L, Reyes Angeles L, Moreno-Rodriguez RA (2001) Living morphogenesis of the ventricles and congenital pathology of their component parts. Cardiol Young 11(6):588–600CrossRefPubMed
7.
go back to reference Escudero EM, Pinilla OA (2007) Paradigms and paradoxes of left ventricular hypertrophy: from the research laboratory to the clinical consultation. Arch Cardiol Mex 77(3):237–248PubMed Escudero EM, Pinilla OA (2007) Paradigms and paradoxes of left ventricular hypertrophy: from the research laboratory to the clinical consultation. Arch Cardiol Mex 77(3):237–248PubMed
10.
go back to reference D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi:10.1093/eurheartj/ehq167ehq167 CrossRefPubMedPubMedCentral D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi:10.​1093/​eurheartj/​ehq167ehq167 CrossRefPubMedPubMedCentral
11.
go back to reference Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267. doi: 10.1161/CIRCULATIONAHA.107.687947 CrossRefPubMed Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267. doi: 10.​1161/​CIRCULATIONAHA.​107.​687947 CrossRefPubMed
12.
go back to reference Oliveira-Carvalho V, Carvalho VO, Silva MM, Guimaraes GV, Bocchi EA (2012) MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? Arq Bras Cardiol 98(4):362–369 pii]CrossRefPubMed Oliveira-Carvalho V, Carvalho VO, Silva MM, Guimaraes GV, Bocchi EA (2012) MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? Arq Bras Cardiol 98(4):362–369 pii]CrossRefPubMed
14.
go back to reference Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW 2nd (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106(1):166–175. doi:10.1161/CIRCRESAHA.109.202176 CrossRefPubMed Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW 2nd (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106(1):166–175. doi:10.​1161/​CIRCRESAHA.​109.​202176 CrossRefPubMed
17.
go back to reference Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J, Westermann D, Bisping E, Ly H, Wang X, Kawase Y, Chen J, Liang L, Sipo I, Vetter R, Weger S, Kurreck J, Erdmann V, Tschope C, Pieske B, Lebeche D, Schultheiss HP, Hajjar RJ, Poller WC (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119(9):1241–1252. doi:10.1161/CIRCULATIONAHA.108.783852 CrossRefPubMedPubMedCentral Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J, Westermann D, Bisping E, Ly H, Wang X, Kawase Y, Chen J, Liang L, Sipo I, Vetter R, Weger S, Kurreck J, Erdmann V, Tschope C, Pieske B, Lebeche D, Schultheiss HP, Hajjar RJ, Poller WC (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119(9):1241–1252. doi:10.​1161/​CIRCULATIONAHA.​108.​783852 CrossRefPubMedPubMedCentral
18.
20.
go back to reference Ai J, Zhang R, Gao X, Niu HF, Wang N, Xu Y, Li Y, Ma N, Sun LH, Pan ZW, Li WM, Yang BF (2012) Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc Res 95(3):385–393. doi:10.1093/cvr/cvs196 CrossRefPubMed Ai J, Zhang R, Gao X, Niu HF, Wang N, Xu Y, Li Y, Ma N, Sun LH, Pan ZW, Li WM, Yang BF (2012) Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc Res 95(3):385–393. doi:10.​1093/​cvr/​cvs196 CrossRefPubMed
21.
go back to reference Da Costa A, Gate-Martinet A, Rouffiange P, Cerisier A, Nadrouss A, Bisch L, Romeyer-Bouchard C, Isaaz K (2012) Anatomical factors involved in difficult cardiac resynchronization therapy procedure: a non-invasive study using dual-source 64-multi-slice computed tomography. Europace 14(6):833–840. doi:10.1093/europace/eur350 CrossRefPubMed Da Costa A, Gate-Martinet A, Rouffiange P, Cerisier A, Nadrouss A, Bisch L, Romeyer-Bouchard C, Isaaz K (2012) Anatomical factors involved in difficult cardiac resynchronization therapy procedure: a non-invasive study using dual-source 64-multi-slice computed tomography. Europace 14(6):833–840. doi:10.​1093/​europace/​eur350 CrossRefPubMed
23.
go back to reference Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, Qin YW, Jing Q (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123(14):2444–2452. doi:10.1242/jcs.067165 Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ, Qin YW, Jing Q (2010) Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 123(14):2444–2452. doi:10.​1242/​jcs.​067165
24.
go back to reference Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078. doi:10.1161/JAHA.113.000078 CrossRefPubMedPubMedCentral Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078. doi:10.​1161/​JAHA.​113.​000078 CrossRefPubMedPubMedCentral
25.
26.
go back to reference Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. doi:10.1038/cdd.2009.153 CrossRefPubMedPubMedCentral Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G (2009) The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ 16(12):1590–1598. doi:10.​1038/​cdd.​2009.​153 CrossRefPubMedPubMedCentral
30.
go back to reference Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491. doi:10.1038/nm1569 CrossRefPubMed Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491. doi:10.​1038/​nm1569 CrossRefPubMed
31.
35.
go back to reference Molkentin JD, Olson EN (1997) GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96(11):3833–3835PubMed Molkentin JD, Olson EN (1997) GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96(11):3833–3835PubMed
40.
go back to reference Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14(7):4947–4957CrossRefPubMedPubMedCentral Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14(7):4947–4957CrossRefPubMedPubMedCentral
41.
go back to reference Ip HS, Wilson DB, Heikinheimo M, Leiden JM, Parmacek MS (1995) The GATA-4 transcription factor transactivates the cardiac-specific troponin C promoter-enhancer in non-muscle cells. Adv Exp Med Biol 382:117–124CrossRefPubMed Ip HS, Wilson DB, Heikinheimo M, Leiden JM, Parmacek MS (1995) The GATA-4 transcription factor transactivates the cardiac-specific troponin C promoter-enhancer in non-muscle cells. Adv Exp Med Biol 382:117–124CrossRefPubMed
42.
go back to reference Murphy AM, Thompson WR, Peng LF, Jones L 2nd (1997) Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4. Biochem J 322(Pt 2):393–401CrossRefPubMedPubMedCentral Murphy AM, Thompson WR, Peng LF, Jones L 2nd (1997) Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4. Biochem J 322(Pt 2):393–401CrossRefPubMedPubMedCentral
43.
go back to reference Charvet C, Auberger P, Tartare-Deckert S, Bernard A, Deckert M (2002) Vav1 couples T cell receptor to serum response factor-dependent transcription via a MEK-dependent pathway. J Biol Chem 277(18):15376–15384. doi:10.1074/jbc.M111627200 CrossRefPubMed Charvet C, Auberger P, Tartare-Deckert S, Bernard A, Deckert M (2002) Vav1 couples T cell receptor to serum response factor-dependent transcription via a MEK-dependent pathway. J Biol Chem 277(18):15376–15384. doi:10.​1074/​jbc.​M111627200 CrossRefPubMed
44.
go back to reference Yang SH, Galanis A, Sharrocks AD (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19(6):4028–4038CrossRefPubMedPubMedCentral Yang SH, Galanis A, Sharrocks AD (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19(6):4028–4038CrossRefPubMedPubMedCentral
45.
go back to reference Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19(1):21–30CrossRefPubMedPubMedCentral Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J (1999) Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19(1):21–30CrossRefPubMedPubMedCentral
46.
go back to reference Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H (2010) Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem 26(6):991–998. doi:10.1159/000324012 CrossRefPubMed Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H (2010) Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem 26(6):991–998. doi:10.​1159/​000324012 CrossRefPubMed
47.
go back to reference McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47CrossRefPubMed McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47CrossRefPubMed
48.
go back to reference Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. doi:10.1038/nm1582 CrossRefPubMed Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13(5):613–618. doi:10.​1038/​nm1582 CrossRefPubMed
49.
go back to reference Schier JJ, Adelstein RS (1982) Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest 69(4):816–825CrossRefPubMedPubMedCentral Schier JJ, Adelstein RS (1982) Structural and enzymatic comparison of human cardiac muscle myosins isolated from infants, adults, and patients with hypertrophic cardiomyopathy. J Clin Invest 69(4):816–825CrossRefPubMedPubMedCentral
51.
go back to reference Zhang HS, Wu QY, Xu M, Zhou YX, Shui CX (2012) Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot. Chin Med J (Engl) 125(13):2243–2249 Zhang HS, Wu QY, Xu M, Zhou YX, Shui CX (2012) Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot. Chin Med J (Engl) 125(13):2243–2249
55.
go back to reference Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE, Investigators IP (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124(23):2491–2501. doi:10.1161/CIRCULATIONAHA.110.011031 CrossRefPubMed Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE, Investigators IP (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124(23):2491–2501. doi:10.​1161/​CIRCULATIONAHA.​110.​011031 CrossRefPubMed
57.
go back to reference Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi:10.1093/eurheartj/ehq013 CrossRefPubMed Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi:10.​1093/​eurheartj/​ehq013 CrossRefPubMed
59.
go back to reference Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, Galuppo P, Kneitz S, Mayr M, Ertl G, Bauersachs J, Thum T (2010) Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res 107(1):138–143. doi:10.1161/CIRCRESAHA.110.216770 CrossRefPubMed Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, Galuppo P, Kneitz S, Mayr M, Ertl G, Bauersachs J, Thum T (2010) Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res 107(1):138–143. doi:10.​1161/​CIRCRESAHA.​110.​216770 CrossRefPubMed
61.
go back to reference Sygitowicz G, Tomaniak M, Blaszczyk O, Koltowski L, Filipiak KJ, Sitkiewicz D (2015) Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis 108(12):634–642. doi:10.1016/j.acvd.2015.07.003 CrossRefPubMed Sygitowicz G, Tomaniak M, Blaszczyk O, Koltowski L, Filipiak KJ, Sitkiewicz D (2015) Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis 108(12):634–642. doi:10.​1016/​j.​acvd.​2015.​07.​003 CrossRefPubMed
62.
go back to reference Villar AV, Garcia R, Merino D, Llano M, Cobo M, Montalvo C, Martin-Duran R, Hurle MA, Nistal JF (2013) Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 167(6):2875–2881. doi:10.1016/j.ijcard.2012.07.021 CrossRefPubMed Villar AV, Garcia R, Merino D, Llano M, Cobo M, Montalvo C, Martin-Duran R, Hurle MA, Nistal JF (2013) Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 167(6):2875–2881. doi:10.​1016/​j.​ijcard.​2012.​07.​021 CrossRefPubMed
63.
go back to reference Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y, Li X (2015) Circulating microRNA-146a and microRNA-21 predict left ventricular remodeling after ST-elevation myocardial infarction. Cardiology 132(4):233–241. doi:10.1159/000437090 CrossRefPubMed Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y, Li X (2015) Circulating microRNA-146a and microRNA-21 predict left ventricular remodeling after ST-elevation myocardial infarction. Cardiology 132(4):233–241. doi:10.​1159/​000437090 CrossRefPubMed
Metadata
Title
MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children
Authors
Ma. C. Sánchez-Gómez
K. A. García-Mejía
M. Pérez-Díaz Conti
G. Díaz-Rosas
I. Palma-Lara
R. Sánchez-Urbina
M. Klünder-Klünder
J. A. Botello-Flores
N. A. Balderrábano- Saucedo
A. Contreras-Ramos
Publication date
01-06-2017
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 5/2017
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-017-1607-8

Other articles of this Issue 5/2017

Pediatric Cardiology 5/2017 Go to the issue