Skip to main content
Top
Published in: Pediatric Cardiology 6/2016

01-08-2016 | Original Article

Mechanical Ventilation After Bidirectional Superior Cavopulmonary Anastomosis for Single-Ventricle Physiology: A Comparison of Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist

Authors: Limin Zhu, Zhuoming Xu, Xiaolei Gong, Jinghao Zheng, Yanjun Sun, Liping Liu, Lu Han, Haibo Zhang, Zhiwei Xu, Jinfen Liu, Peter C. Rimensberger

Published in: Pediatric Cardiology | Issue 6/2016

Login to get access

Abstract

We evaluated the effects of different respiratory assist modes on cerebral blood flow (CBF) and arterial oxygenation in single-ventricle patients after bidirectional superior cavopulmonary anastomosis (BCPA). We hypothesized that preserved auto-regulation of respiration during neurally adjusted ventilatory assist (NAVA) may have potential advantages for CBF and pulmonary blood flow regulation after the BCPA procedure. We enrolled 23 patients scheduled for BCPA, who underwent pressure-controlled ventilation (PCV), pressure support ventilation (PSV), and NAVA at two assist levels for all modes in a randomized order. PCV targeting large V T (15 mL × kg−1) resulted in lower CBF and oxygenation compared to targeting low V T (10 mL × kg−1). During PSV and NAVA, ventilation assist levels were titrated to reduce EAdi from baseline by 75 % (high assist) and 50 % (low assist). High assist levels during PSV (PSVhigh) were associated with lower PaCO2, PaO2, and O2SAT, lower CBF, and higher pulsatility index compared with those during NAVAhigh. There were no differences in parameters when using low assist levels, except for slightly greater oxygenation in the NAVAlow group. Modifying assist levels during NAVA did not influence hemodynamics, cerebral perfusion, or gas exchange. Targeting the larger V T during PCV resulted in hyperventilation, did not improve oxygenation, and was accompanied by reduced CBF. Similarly, high assist levels during PSV led to mild hyperventilation, resulting in reduced CBF. NAVA’s results were independent of the assist level chosen, causing normalized PaCO2, improved oxygenation, and better CBF than did any other mode, with the exception of PSV at low assist levels.
Literature
1.
2.
go back to reference Seliem MA, Baffa JM, Vetter JM, Chen SL, Chin AJ, Norwood WI Jr (1993) Changes in right ventricular geometry and heart rate early after hemi-Fontan procedure. Ann Thorac Surg 55:1508–1512CrossRefPubMed Seliem MA, Baffa JM, Vetter JM, Chen SL, Chin AJ, Norwood WI Jr (1993) Changes in right ventricular geometry and heart rate early after hemi-Fontan procedure. Ann Thorac Surg 55:1508–1512CrossRefPubMed
3.
go back to reference Fogel MA, Weinberg PM, Chin AJ, Fellows KE, Hoffman EA (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221CrossRefPubMed Fogel MA, Weinberg PM, Chin AJ, Fellows KE, Hoffman EA (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221CrossRefPubMed
4.
go back to reference Hopkins RA, Armstrong BE, Serwer GA, Peterson RJ, Oldham HN Jr (1985) Physiological rationale for a bidirectional cavopulmonary shunt a versatile complement to the Fontan principle. J Thorac Cardiovasc Surg 90:391–398PubMed Hopkins RA, Armstrong BE, Serwer GA, Peterson RJ, Oldham HN Jr (1985) Physiological rationale for a bidirectional cavopulmonary shunt a versatile complement to the Fontan principle. J Thorac Cardiovasc Surg 90:391–398PubMed
5.
go back to reference Tideman E, Marsál K, Ley D (2007) Cognitive function in young adults following intrauterine growth restriction with abnormal fetal aortic blood flow. Ultrasound Obstet Gynecol 29:614–618CrossRefPubMed Tideman E, Marsál K, Ley D (2007) Cognitive function in young adults following intrauterine growth restriction with abnormal fetal aortic blood flow. Ultrasound Obstet Gynecol 29:614–618CrossRefPubMed
6.
go back to reference Rosenbaum JL, Almli CR, Yundt KD, Altman DI, Powers WJ (1997) Higher neonatal cerebral blood flow correlates with worse childhood neurologic outcome. Neurology 49:1035–1041CrossRefPubMed Rosenbaum JL, Almli CR, Yundt KD, Altman DI, Powers WJ (1997) Higher neonatal cerebral blood flow correlates with worse childhood neurologic outcome. Neurology 49:1035–1041CrossRefPubMed
7.
go back to reference Chang L, Anderson T, Migneco OA, Boone K, Mehringer CM, Villanueva-Meyer J, Berman N, Mena I (1993) Cerebral abnormalities in myotonic dystrophy. Cerebral blood flow, magnetic resonance imaging, and neuropsychological tests. Arch Neurol 50:917–923CrossRefPubMed Chang L, Anderson T, Migneco OA, Boone K, Mehringer CM, Villanueva-Meyer J, Berman N, Mena I (1993) Cerebral abnormalities in myotonic dystrophy. Cerebral blood flow, magnetic resonance imaging, and neuropsychological tests. Arch Neurol 50:917–923CrossRefPubMed
8.
go back to reference Koide H, Kobayashi S, Kitani M, Tsunematsu T, Nakazawa Y (1994) Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia. Gerontology 40:279–285CrossRefPubMed Koide H, Kobayashi S, Kitani M, Tsunematsu T, Nakazawa Y (1994) Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia. Gerontology 40:279–285CrossRefPubMed
9.
go back to reference Li J, Hoskote A, Hickey C, Stephens D, Bohn D, Holtby H, Van Arsdell G, Redington AN, Adatia I (2005) Effect of carbon dioxide on systemic oxygenation, oxygen consumption, and blood lactate levels after bidirectional superior cavopulmonary anastomosis. Crit Care Med 33:984–989CrossRefPubMed Li J, Hoskote A, Hickey C, Stephens D, Bohn D, Holtby H, Van Arsdell G, Redington AN, Adatia I (2005) Effect of carbon dioxide on systemic oxygenation, oxygen consumption, and blood lactate levels after bidirectional superior cavopulmonary anastomosis. Crit Care Med 33:984–989CrossRefPubMed
10.
go back to reference Fogel MA, Durning S, Wernovsky G, Pollock AN, Gaynor JW, Nicolson S (2004) Brain versus lung: hierarchy of feedback loops in single-ventricle patients with superior cavopulmonary connection. Circulation 110((11 Suppl 1)):II147–II152PubMed Fogel MA, Durning S, Wernovsky G, Pollock AN, Gaynor JW, Nicolson S (2004) Brain versus lung: hierarchy of feedback loops in single-ventricle patients with superior cavopulmonary connection. Circulation 110((11 Suppl 1)):II147–II152PubMed
11.
go back to reference Hoskote A, Li J, Hickey C, Erickson S, Van Arsdell G, Stephens D, Holtby H, Bohn D, Adatia I (2004) The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 44:1501–1509CrossRefPubMed Hoskote A, Li J, Hickey C, Erickson S, Van Arsdell G, Stephens D, Holtby H, Bohn D, Adatia I (2004) The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 44:1501–1509CrossRefPubMed
12.
go back to reference Bradley SM, Simsic JM, Mulvihill DM (1998) Hyperventilation impairs oxygenation after bidirectional superior cavopulmonary connection. Circulation 98(19 Suppl):II372–II376; discussion, II376–II377 Bradley SM, Simsic JM, Mulvihill DM (1998) Hyperventilation impairs oxygenation after bidirectional superior cavopulmonary connection. Circulation 98(19 Suppl):II372–II376; discussion, II376–II377
13.
go back to reference Chang AC, Zucker HA, Hickey PR, Wessel DL (1995) Pulmonary vascular resistance in infants after cardiac surgery: role of carbon dioxide and hydrogen ion. Crit Care Med 23:568–574CrossRefPubMed Chang AC, Zucker HA, Hickey PR, Wessel DL (1995) Pulmonary vascular resistance in infants after cardiac surgery: role of carbon dioxide and hydrogen ion. Crit Care Med 23:568–574CrossRefPubMed
14.
go back to reference Karsli C, Luginbuehl I, Farrar M, Bissonnette B (2003) Cerebrovascular carbon dioxide reactivity in children anaesthetized with propofol. Paediatr Anaesth 13:26–31CrossRefPubMed Karsli C, Luginbuehl I, Farrar M, Bissonnette B (2003) Cerebrovascular carbon dioxide reactivity in children anaesthetized with propofol. Paediatr Anaesth 13:26–31CrossRefPubMed
15.
go back to reference McNeill BR, Murkin JM, Farrar JK, Gelb AW (1990) Autoregulation and the CO2 responsiveness of cerebral blood flow after cardiopulmonary bypass. Can J Anaesth 37:313–317CrossRefPubMed McNeill BR, Murkin JM, Farrar JK, Gelb AW (1990) Autoregulation and the CO2 responsiveness of cerebral blood flow after cardiopulmonary bypass. Can J Anaesth 37:313–317CrossRefPubMed
16.
go back to reference Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436CrossRefPubMed Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436CrossRefPubMed
17.
go back to reference Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D (2011) Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 37:263–271CrossRefPubMed Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D (2011) Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 37:263–271CrossRefPubMed
18.
go back to reference Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C (2012) Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Med 38:1224–1232CrossRefPubMed Grasselli G, Beck J, Mirabella L, Pesenti A, Slutsky AS, Sinderby C (2012) Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Med 38:1224–1232CrossRefPubMed
19.
go back to reference Adatia I, Atz AM, Wessel DL (2005) Inhaled nitric oxide does not improve systemic oxygenation after the bidirectional superior cavopulmonary anastomosis. J Thorac Cardiovasc Surg 129:217–219CrossRefPubMed Adatia I, Atz AM, Wessel DL (2005) Inhaled nitric oxide does not improve systemic oxygenation after the bidirectional superior cavopulmonary anastomosis. J Thorac Cardiovasc Surg 129:217–219CrossRefPubMed
20.
go back to reference Aeba R, Katogi T, Kashima I, Omoto T, Kawada S, Omae K (2000) Factors influencing arterial oxygenation after bidirectional cavopulmonary shunt without additional sources of pulmonary blood flow. J Thorac Cardiovasc Surg 120:589–595CrossRefPubMed Aeba R, Katogi T, Kashima I, Omoto T, Kawada S, Omae K (2000) Factors influencing arterial oxygenation after bidirectional cavopulmonary shunt without additional sources of pulmonary blood flow. J Thorac Cardiovasc Surg 120:589–595CrossRefPubMed
21.
go back to reference Bradley SM, Simsic JM, Mulvihill DM (2003) Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 126:1033–1039CrossRefPubMed Bradley SM, Simsic JM, Mulvihill DM (2003) Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 126:1033–1039CrossRefPubMed
22.
go back to reference Salim MA, Case CL, Sade RM, Watson DC, Alpert BS, DiSessa TG (1995) Pulmonary/systemic flow ratio in children after cavopulmonary anastomosis. J Am Coll Cardiol 25:735–738CrossRefPubMed Salim MA, Case CL, Sade RM, Watson DC, Alpert BS, DiSessa TG (1995) Pulmonary/systemic flow ratio in children after cavopulmonary anastomosis. J Am Coll Cardiol 25:735–738CrossRefPubMed
23.
go back to reference Kety SS, Schmidt CR (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25:107–119CrossRefPubMedCentral Kety SS, Schmidt CR (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25:107–119CrossRefPubMedCentral
24.
go back to reference Lakshminrusimha S, Steinhorn RH, Wedgwood S, Savorgnan F, Nair J, Mathew B, Gugino SF, Russell JA, Swartz DD (2011) Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100 % oxygen. J Appl Physiol 111:1441–1447CrossRefPubMedPubMedCentral Lakshminrusimha S, Steinhorn RH, Wedgwood S, Savorgnan F, Nair J, Mathew B, Gugino SF, Russell JA, Swartz DD (2011) Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100 % oxygen. J Appl Physiol 111:1441–1447CrossRefPubMedPubMedCentral
25.
go back to reference Fullerton DA, Kirson LE, St Cyr JA, Kinnard T, Whitman GJ (1993) Influence of hydrogen ion concentration versus carbon dioxide tension on pulmonary vascular resistance after cardiac operation. J Thorac Cardiovasc Surg 106:528–536PubMed Fullerton DA, Kirson LE, St Cyr JA, Kinnard T, Whitman GJ (1993) Influence of hydrogen ion concentration versus carbon dioxide tension on pulmonary vascular resistance after cardiac operation. J Thorac Cardiovasc Surg 106:528–536PubMed
26.
go back to reference Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS (2007) Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest 131:711–717CrossRefPubMed Sinderby C, Beck J, Spahija J, de Marchie M, Lacroix J, Navalesi P, Slutsky AS (2007) Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest 131:711–717CrossRefPubMed
27.
go back to reference Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34:2010–2018CrossRefPubMed Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34:2010–2018CrossRefPubMed
28.
go back to reference Terzi N, Pelieu I, Guittet L, Ramakers M, Seguin A, Daubin C, Charbonneau P, du Cheyron D, Lofaso F (2010) Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med 38:1830–1837CrossRefPubMed Terzi N, Pelieu I, Guittet L, Ramakers M, Seguin A, Daubin C, Charbonneau P, du Cheyron D, Lofaso F (2010) Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med 38:1830–1837CrossRefPubMed
29.
go back to reference Lellouche F, Brochard L (2009) Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol 23:81–93CrossRefPubMed Lellouche F, Brochard L (2009) Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol 23:81–93CrossRefPubMed
30.
go back to reference Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP (2011) Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med 39:2599–2604CrossRefPubMed Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP (2011) Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med 39:2599–2604CrossRefPubMed
31.
go back to reference Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, Ogawa S (2010) The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg 111:1279–1284CrossRefPubMed Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, Ogawa S (2010) The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg 111:1279–1284CrossRefPubMed
32.
go back to reference Karsli C, Luginbuehl I, Farrar M, Bissonnette B (2002) Propofol decreases cerebral blood flow velocity in anesthetized children. Can J Anaesth 49:830–834CrossRefPubMed Karsli C, Luginbuehl I, Farrar M, Bissonnette B (2002) Propofol decreases cerebral blood flow velocity in anesthetized children. Can J Anaesth 49:830–834CrossRefPubMed
Metadata
Title
Mechanical Ventilation After Bidirectional Superior Cavopulmonary Anastomosis for Single-Ventricle Physiology: A Comparison of Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist
Authors
Limin Zhu
Zhuoming Xu
Xiaolei Gong
Jinghao Zheng
Yanjun Sun
Liping Liu
Lu Han
Haibo Zhang
Zhiwei Xu
Jinfen Liu
Peter C. Rimensberger
Publication date
01-08-2016
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 6/2016
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-016-1392-9

Other articles of this Issue 6/2016

Pediatric Cardiology 6/2016 Go to the issue