Skip to main content
Top
Published in: Pediatric Cardiology 4/2016

01-04-2016 | Original Article

MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN

Authors: Lei Wang, Danqiu Tian, Jihua Hu, Haijian Xing, Min Sun, Juanli Wang, Qiang Jian, Hua Yang

Published in: Pediatric Cardiology | Issue 4/2016

Login to get access

Abstract

Congenital heart disease (CHD) is the leading cause of death in infants in the world. The study of CHDs has come a long way since their classification and description. Although transcriptional programmes that are impaired in individuals with CHDs are being identified, the mechanisms of how these deficiencies translate to a structural defect are unknown. In this study, using high-throughput microarray analysis and molecular network analysis, FXN was identified to be the most differentially expressed key gene in CHD. By TargetScan analysis, we predicted FXN was the target gene of miRNA-145 and miRNA-182. Through real-time PCR analysis of clinical samples and experiments in cell lines, we confirmed that miRNA-145 but not miRNA-182 directly binds to the 3′ UTR region of FXN and negatively regulates its expression. We further found that through targeting FXN, miRNA-145 regulates apoptosis and mitochondrial function. In general, our study confirmed the differentially expressed FXN regulates the development of CHD and the differential expression was under the control of miRNA-145. These results might provide new insight into the understanding of the CHD pathogenesis and may facilitate further therapeutic studies.
Literature
1.
go back to reference Al-Mahdawi S et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746CrossRefPubMed Al-Mahdawi S et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746CrossRefPubMed
3.
go back to reference Bulteau AL et al (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305(5681):242–245CrossRefPubMed Bulteau AL et al (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305(5681):242–245CrossRefPubMed
4.
go back to reference Calabrese V et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162CrossRefPubMed Calabrese V et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162CrossRefPubMed
5.
go back to reference Campuzano V et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427CrossRefPubMed Campuzano V et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427CrossRefPubMed
8.
go back to reference Frederikse PH, Donnelly R, Partyka LM (2006) miRNA and Dicer in the mammalian lens: expression of brain-specific miRNAs in the lens. Histochem Cell Biol 126(1):1–8CrossRefPubMed Frederikse PH, Donnelly R, Partyka LM (2006) miRNA and Dicer in the mammalian lens: expression of brain-specific miRNAs in the lens. Histochem Cell Biol 126(1):1–8CrossRefPubMed
9.
go back to reference Gakh O et al (2010) Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron–sulfur cluster assembly. J Biol Chem 285(49):38486–38501CrossRefPubMedPubMedCentral Gakh O et al (2010) Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron–sulfur cluster assembly. J Biol Chem 285(49):38486–38501CrossRefPubMedPubMedCentral
10.
go back to reference Gong LG et al (2005) Analysis of single nucleotide polymorphisms and haplotypes in HOXC gene cluster within susceptible region 12q13 of simple congenital heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22(5):497–501PubMed Gong LG et al (2005) Analysis of single nucleotide polymorphisms and haplotypes in HOXC gene cluster within susceptible region 12q13 of simple congenital heart disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22(5):497–501PubMed
11.
go back to reference Greene E et al (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390CrossRefPubMedPubMedCentral Greene E et al (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390CrossRefPubMedPubMedCentral
12.
go back to reference He S et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441(4):763–769CrossRefPubMed He S et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441(4):763–769CrossRefPubMed
13.
go back to reference Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16(4):155–165PubMed Hoffman JI (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16(4):155–165PubMed
14.
go back to reference Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRefPubMed Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRefPubMed
15.
go back to reference Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264CrossRefPubMed Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264CrossRefPubMed
16.
go back to reference Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260CrossRefPubMedPubMedCentral Lim SS et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260CrossRefPubMedPubMedCentral
17.
go back to reference Lu C, Cortopassi G (2007) Frataxin knockdown causes loss of cytoplasmic iron–sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457(1):111–122CrossRefPubMedPubMedCentral Lu C, Cortopassi G (2007) Frataxin knockdown causes loss of cytoplasmic iron–sulfur cluster functions, redox alterations and induction of heme transcripts. Arch Biochem Biophys 457(1):111–122CrossRefPubMedPubMedCentral
18.
19.
go back to reference Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17CrossRefPubMed Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17CrossRefPubMed
20.
go back to reference Schoenfeld RA et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799CrossRefPubMed Schoenfeld RA et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799CrossRefPubMed
21.
22.
go back to reference Stelzl U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968CrossRefPubMed Stelzl U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968CrossRefPubMed
23.
go back to reference Utsunomiya T et al (2014) Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res 44(6):631–638CrossRefPubMed Utsunomiya T et al (2014) Specific miRNA expression profiles of non-tumor liver tissue predict a risk for recurrence of hepatocellular carcinoma. Hepatol Res 44(6):631–638CrossRefPubMed
24.
25.
go back to reference Whitnall M et al (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci USA 105(28):9757–9762CrossRefPubMedPubMedCentral Whitnall M et al (2008) The MCK mouse heart model of Friedreich’s ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proc Natl Acad Sci USA 105(28):9757–9762CrossRefPubMedPubMedCentral
26.
go back to reference Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220CrossRefPubMed Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220CrossRefPubMed
27.
go back to reference Zhao Y et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317CrossRefPubMed Zhao Y et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317CrossRefPubMed
28.
Metadata
Title
MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN
Authors
Lei Wang
Danqiu Tian
Jihua Hu
Haijian Xing
Min Sun
Juanli Wang
Qiang Jian
Hua Yang
Publication date
01-04-2016
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 4/2016
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-015-1325-z

Other articles of this Issue 4/2016

Pediatric Cardiology 4/2016 Go to the issue