Skip to main content
Top
Published in: Pediatric Cardiology 4/2015

01-04-2015 | Original Article

Post-mortem Whole Exome Sequencing with Gene-Specific Analysis for Autopsy-Negative Sudden Unexplained Death in the Young: A Case Series

Authors: Nupoor Narula, David J. Tester, Anna Paulmichl, Joseph J. Maleszewski, Michael J. Ackerman

Published in: Pediatric Cardiology | Issue 4/2015

Login to get access

Abstract

Annually, thousands of sudden deaths in individuals under 35 years remain unexplained following comprehensive medico-legal autopsy. Previously, post-mortem genetic analysis by Sanger sequencing of four major cardiac channelopathy genes revealed that approximately one-fourth of these autopsy-negative sudden unexplained death in the young (SUDY) cases harbored an underlying mutation. However, there are now over 100 sudden death-predisposing cardiac channelopathy-, cardiomyopathy-, and metabolic disorder-susceptibility genes. Here, we set out to determine whether post-mortem whole exome sequencing (WES) is an efficient strategy to detect ultra-rare, potentially pathogenic variants. We performed post-mortem WES and gene-specific analysis of 117 sudden death-susceptibility genes for 14 consecutively referred Caucasian SUDY victims (average age at death 17.4 ± 8.6 years) to identify putative SUDY-associated mutations. On average, each SUDY case had 12,758 ± 2,016 non-synonymous variants, of which 79 ± 15 localized to these 117 genes. Overall, eight ultra-rare variants (seven missense, one in-frame insertion) absent in three publically available exome databases were identified in six genes (three in TTN, and one each in CACNA1C, JPH2, MYH7, VCL, RYR2) in seven of 14 cases (50 %). Of the seven missense alterations, two (T171M-CACNA1C, I22160T-TTN) were predicted damaging by three independent in silico tools. Although WES and gene-specific surveillance is an efficient means to detect rare genetic variants that might underlie the pathogenic cause of death, accurate interpretation of each variant is challenging. Great restraint and caution must be exercised otherwise families may be informed prematurely and incorrectly that the root cause has been found.
Literature
1.
go back to reference Abecasis G, Neale B (2011) Exome Chip Design. Accessed August 2012 Abecasis G, Neale B (2011) Exome Chip Design. Accessed August 2012
2.
go back to reference Ackerman M (2009) State of postmortem genetic testing known as the cardiac channel molecular autopsy in the forensic evaluation of unexplained sudden cardiac death in the young. Pacing Clin Electrophysiol 32(Suppl 2):S86–S89CrossRefPubMedCentralPubMed Ackerman M (2009) State of postmortem genetic testing known as the cardiac channel molecular autopsy in the forensic evaluation of unexplained sudden cardiac death in the young. Pacing Clin Electrophysiol 32(Suppl 2):S86–S89CrossRefPubMedCentralPubMed
3.
go back to reference Ackerman M, Priori S, Willems S, Berul C, Brugada R, Calkins H, Camm A, Ellinor P, Gollob M, Hamilton R, Hershberger R, Judge D, Le Marec H, McKenna W, Schulze-Bahr E, Semsarian C, Towbin J, Watkins H, Wilde A, Wolpert C, Zipes D (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8(8):1308–1339CrossRefPubMed Ackerman M, Priori S, Willems S, Berul C, Brugada R, Calkins H, Camm A, Ellinor P, Gollob M, Hamilton R, Hershberger R, Judge D, Le Marec H, McKenna W, Schulze-Bahr E, Semsarian C, Towbin J, Watkins H, Wilde A, Wolpert C, Zipes D (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8(8):1308–1339CrossRefPubMed
4.
go back to reference ACMG Board of Directors (2012) Points to consider in the clinical application of genomic sequencing. Genet Med 14 (8):759–761 ACMG Board of Directors (2012) Points to consider in the clinical application of genomic sequencing. Genet Med 14 (8):759–761
5.
go back to reference Asmann YW, Middha S, Hossain A, Baheti S, Li Y, Chai HS, Sun Z, Duffy PH, Hadad AA, Nair A, Liu X, Zhang Y, Klee EW, Kalari KR, Kocher JP (2011) TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btr612 PubMedCentralPubMed Asmann YW, Middha S, Hossain A, Baheti S, Li Y, Chai HS, Sun Z, Duffy PH, Hadad AA, Nair A, Liu X, Zhang Y, Klee EW, Kalari KR, Kocher JP (2011) TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data. Bioinformatics. doi:10.​1093/​bioinformatics/​btr612 PubMedCentralPubMed
7.
go back to reference Basso C, Calabrese F, Corrado D, Thiene G (2001) Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res 50(2):290–300CrossRefPubMed Basso C, Calabrese F, Corrado D, Thiene G (2001) Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res 50(2):290–300CrossRefPubMed
8.
go back to reference Basso C, Burke M, Fornes P, Gallagher PJ, de Gouveia RH, Sheppard M, Thiene G, van der Wal A, Association for European Cardiovascular P (2008) Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch 452(1):11–18CrossRefPubMed Basso C, Burke M, Fornes P, Gallagher PJ, de Gouveia RH, Sheppard M, Thiene G, van der Wal A, Association for European Cardiovascular P (2008) Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch 452(1):11–18CrossRefPubMed
9.
go back to reference Boczek NJ, Best JM, Tester DJ, Giudicessi JR, Middha S, Evans JM, Kamp TJ, Ackerman MJ (2013) Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet 6(3):279–289CrossRefPubMedCentralPubMed Boczek NJ, Best JM, Tester DJ, Giudicessi JR, Middha S, Evans JM, Kamp TJ, Ackerman MJ (2013) Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet 6(3):279–289CrossRefPubMedCentralPubMed
10.
go back to reference Brugada R, Campuzano O, Brugada P, Brugada J, Hong K (2005 [Updated 2012]) Brugada Syndrome. GeneReviews [Internet]. University of Washington, Seattle Brugada R, Campuzano O, Brugada P, Brugada J, Hong K (2005 [Updated 2012]) Brugada Syndrome. GeneReviews [Internet]. University of Washington, Seattle
11.
12.
go back to reference Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann B-M, Clark T, Shaffer C, Benson DW, Kaab S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL, Jr (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127:1009–1017. doi:10.1161/CIRCULATIONAHA.112.001216 CrossRefPubMed Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann B-M, Clark T, Shaffer C, Benson DW, Kaab S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL, Jr (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127:1009–1017. doi:10.​1161/​CIRCULATIONAHA.​112.​001216 CrossRefPubMed
13.
go back to reference Driscoll DJ, Edwards WD (1985) Sudden unexpected death in children and adolescents. J Am Coll Cardiol 5(6 Suppl):118B–121BCrossRefPubMed Driscoll DJ, Edwards WD (1985) Sudden unexpected death in children and adolescents. J Am Coll Cardiol 5(6 Suppl):118B–121BCrossRefPubMed
14.
go back to reference Fuentes Fajardo KV, Adams D, Program NCS, Mason CE, Sincan M, Tifft C, Toro C, Boerkoel CF, Gahl W, Markello T (2012) Detecting false-positive signals in exome sequencing. Hum Mutat 33(4):609–613. doi:10.1002/humu.22033 CrossRefPubMed Fuentes Fajardo KV, Adams D, Program NCS, Mason CE, Sincan M, Tifft C, Toro C, Boerkoel CF, Gahl W, Markello T (2012) Detecting false-positive signals in exome sequencing. Hum Mutat 33(4):609–613. doi:10.​1002/​humu.​22033 CrossRefPubMed
15.
16.
go back to reference Gladding P, Evans C, Crawford J, Chung S, Vaughan A, Webster D, Neas K, Love D, Rees M, Shelling A, Skinner J (2010) Posthumous diagnosis of long QT syndrome from neonatal screening cards. Heart Rhythm 7(4):481–486CrossRefPubMed Gladding P, Evans C, Crawford J, Chung S, Vaughan A, Webster D, Neas K, Love D, Rees M, Shelling A, Skinner J (2010) Posthumous diagnosis of long QT syndrome from neonatal screening cards. Heart Rhythm 7(4):481–486CrossRefPubMed
17.
go back to reference Hershberger RE, Cowan J, Morales A, Siegfried JD (2009) Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2(3):253–261CrossRefPubMedCentralPubMed Hershberger RE, Cowan J, Morales A, Siegfried JD (2009) Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2(3):253–261CrossRefPubMedCentralPubMed
18.
go back to reference Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, Wilde AA, Ackerman MJ (2009) Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 120(18):1752–1760CrossRefPubMedCentralPubMed Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M, Wilde AA, Ackerman MJ (2009) Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 120(18):1752–1760CrossRefPubMedCentralPubMed
19.
go back to reference Kupershmidt S, Yang IC, Sutherland M, Wells KS, Yang T, Yang P, Balser JR, Roden DM (2002) Cardiac-enriched LIM domain protein fhl2 is required to generate I(Ks) in a heterologous system. Cardiovasc Res 56(1):93–103CrossRefPubMed Kupershmidt S, Yang IC, Sutherland M, Wells KS, Yang T, Yang P, Balser JR, Roden DM (2002) Cardiac-enriched LIM domain protein fhl2 is required to generate I(Ks) in a heterologous system. Cardiovasc Res 56(1):93–103CrossRefPubMed
22.
go back to reference Liberthson RR (1996) Sudden death from cardiac causes in children and young adults. N Engl J Med 334(16):1039–1044CrossRefPubMed Liberthson RR (1996) Sudden death from cardiac causes in children and young adults. N Engl J Med 334(16):1039–1044CrossRefPubMed
23.
go back to reference MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335(6070):823–828. doi:10.1126/science.1215040 CrossRefPubMedCentralPubMed MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335(6070):823–828. doi:10.​1126/​science.​1215040 CrossRefPubMedCentralPubMed
24.
go back to reference Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO (1996) Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276(3):199–204CrossRefPubMed Maron BJ, Shirani J, Poliac LC, Mathenge R, Roberts WC, Mueller FO (1996) Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276(3):199–204CrossRefPubMed
26.
go back to reference Puranik R, Chow C, Duflou J, Kilborn M, McGuire M (2005) Sudden death in the young. Heart Rhythm 2(12):1277–1282CrossRefPubMed Puranik R, Chow C, Duflou J, Kilborn M, McGuire M (2005) Sudden death in the young. Heart Rhythm 2(12):1277–1282CrossRefPubMed
27.
go back to reference Skinner JR, Duflou JA, Semsarian C (2008) Reducing sudden death in young people in Australia and New Zealand: the TRAGADY initiative. Med J Aust 189(10):539–540PubMed Skinner JR, Duflou JA, Semsarian C (2008) Reducing sudden death in young people in Australia and New Zealand: the TRAGADY initiative. Med J Aust 189(10):539–540PubMed
28.
go back to reference Skinner J, Crawford J, Smith W, Aitken A, Heaven D, Evans C, Hayes I, Neas K, Stables S, Koelmeyer T, Denmark L, Vuletic J, Maxwell F, White K, Yang T, Roden D, Leren T, Shelling A, Love D (2010) Prospective, population-based long QT molecular autopsy study of post-mortem negative sudden death in 1–40 year olds. Heart Rhythm. doi:10.1016/j.hrthm.2010.11.016 Skinner J, Crawford J, Smith W, Aitken A, Heaven D, Evans C, Hayes I, Neas K, Stables S, Koelmeyer T, Denmark L, Vuletic J, Maxwell F, White K, Yang T, Roden D, Leren T, Shelling A, Love D (2010) Prospective, population-based long QT molecular autopsy study of post-mortem negative sudden death in 1–40 year olds. Heart Rhythm. doi:10.​1016/​j.​hrthm.​2010.​11.​016
29.
go back to reference Tester DJ, Ackerman MJ (2006) The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol 21(3):166–172CrossRefPubMed Tester DJ, Ackerman MJ (2006) The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol 21(3):166–172CrossRefPubMed
30.
go back to reference Tester DJ, Ackerman MJ (2009) Cardiomyopathic and channelopathic causes of sudden unexplained death in infants and children. Annu Rev Med 60:69–84CrossRefPubMed Tester DJ, Ackerman MJ (2009) Cardiomyopathic and channelopathic causes of sudden unexplained death in infants and children. Annu Rev Med 60:69–84CrossRefPubMed
31.
go back to reference Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123(9):1021–1037CrossRefPubMedCentralPubMed Tester DJ, Ackerman MJ (2011) Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123(9):1021–1037CrossRefPubMedCentralPubMed
32.
go back to reference Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ (2012) Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc 87(6):524–539CrossRefPubMedCentralPubMed Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ (2012) Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc 87(6):524–539CrossRefPubMedCentralPubMed
33.
go back to reference Tsuji K, Akao M, Ishii TM, Ohno S, Makiyama T, Takenaka K, Doi T, Haruna Y, Yoshida H, Nakashima T, Kita T, Horie M (2007) Mechanistic basis for the pathogenesis of long QT syndrome associated with a common splicing mutation in KCNQ1 gene. J Mol Cell Cardiol 42(3):662–669. doi:10.1016/j.yjmcc.2006.12.015 CrossRefPubMed Tsuji K, Akao M, Ishii TM, Ohno S, Makiyama T, Takenaka K, Doi T, Haruna Y, Yoshida H, Nakashima T, Kita T, Horie M (2007) Mechanistic basis for the pathogenesis of long QT syndrome associated with a common splicing mutation in KCNQ1 gene. J Mol Cell Cardiol 42(3):662–669. doi:10.​1016/​j.​yjmcc.​2006.​12.​015 CrossRefPubMed
34.
Metadata
Title
Post-mortem Whole Exome Sequencing with Gene-Specific Analysis for Autopsy-Negative Sudden Unexplained Death in the Young: A Case Series
Authors
Nupoor Narula
David J. Tester
Anna Paulmichl
Joseph J. Maleszewski
Michael J. Ackerman
Publication date
01-04-2015
Publisher
Springer US
Published in
Pediatric Cardiology / Issue 4/2015
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-014-1082-4

Other articles of this Issue 4/2015

Pediatric Cardiology 4/2015 Go to the issue