Skip to main content
Top
Published in: Pediatric Cardiology 3/2011

01-03-2011 | Riley Symposium

Autophagy in Cardiac Plasticity and Disease

Author: Joseph A. Hill

Published in: Pediatric Cardiology | Issue 3/2011

Login to get access

Abstract

The heart is a highly plastic organ. In response to the physiological stress of normal life, as well as the pathological stress of disease, the myocardium manifests robust and rapid changes in mass. In the context of disease-associated stress, this myocardial remodeling response can culminate in ventricular thinning, mechanical dysfunction, and a clinical syndrome of heart failure. Recently, autophagy, a process of cellular cannibalization, has been implicated in many of these remodeling reactions. In some settings, the autophagic response is beneficial and pro-survival; in other contexts, it is maladaptive and promotes disease progression. Together, these observations raise the intriguing prospect of targeting maladaptive autophagy and advancing cell survival-promoting, adaptive autophagy to benefit patients with heart disease.
Literature
1.
go back to reference Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedCrossRef Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedCrossRef
2.
go back to reference Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales C, Kong Y et al (2011) HDAC inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA (in press) Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales C, Kong Y et al (2011) HDAC inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA (in press)
3.
go back to reference Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2: pe51 Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2: pe51
4.
go back to reference Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli AR, Li J et al (2005) Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 97:1018–1026PubMedCrossRef Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli AR, Li J et al (2005) Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 97:1018–1026PubMedCrossRef
5.
go back to reference Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780PubMedCrossRef Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG (2000) Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 342:770–780PubMedCrossRef
6.
go back to reference Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98:425–444PubMed Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98:425–444PubMed
7.
go back to reference Decker RS, Decker ML, Herring GH, Morton PC, Wildenthal K (1980) Lysosomal vacuolar apparatus of cardiac myocytes in heart of starved and re-fed rabbits. J Mol Cell Cardiol 12:1175–1189PubMedCrossRef Decker RS, Decker ML, Herring GH, Morton PC, Wildenthal K (1980) Lysosomal vacuolar apparatus of cardiac myocytes in heart of starved and re-fed rabbits. J Mol Cell Cardiol 12:1175–1189PubMedCrossRef
8.
go back to reference Decker RS, Poole AR, Crie JS, Dingle JT, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. Am J Pathol 98:445–456PubMed Decker RS, Poole AR, Crie JS, Dingle JT, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. Am J Pathol 98:445–456PubMed
9.
go back to reference Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L et al (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828PubMedCrossRef Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L et al (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828PubMedCrossRef
10.
go back to reference Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117:2825–2833PubMedCrossRef Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117:2825–2833PubMedCrossRef
11.
go back to reference Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W et al (2004) Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 43:2191–2199PubMedCrossRef Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W et al (2004) Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 43:2191–2199PubMedCrossRef
12.
go back to reference Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589PubMedCrossRef Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589PubMedCrossRef
13.
go back to reference Gurusamy N, Lekli I, Gorbunov NV, Gherghiceanu M, Popescu LM, Das DK (2009) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 13:373–387PubMedCrossRef Gurusamy N, Lekli I, Gorbunov NV, Gherghiceanu M, Popescu LM, Das DK (2009) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 13:373–387PubMedCrossRef
14.
go back to reference Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787PubMedCrossRef Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281:29776–29787PubMedCrossRef
15.
go back to reference Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157PubMedCrossRef Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157PubMedCrossRef
16.
go back to reference Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991PubMedCrossRef Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991PubMedCrossRef
18.
go back to reference Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z et al (2000) Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101:2863–2869PubMed Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z et al (2000) Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101:2863–2869PubMed
19.
go back to reference Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417PubMed Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72:369–417PubMed
20.
go back to reference Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664–670PubMedCrossRef Inoue Y, Klionsky DJ (2010) Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 21:664–670PubMedCrossRef
21.
go back to reference Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292PubMedCrossRef Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292PubMedCrossRef
22.
go back to reference Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47:887–893PubMedCrossRef Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47:887–893PubMedCrossRef
23.
go back to reference Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedCrossRef Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedCrossRef
24.
go back to reference Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84PubMedCrossRef Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84PubMedCrossRef
25.
go back to reference Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A et al (2009) Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am J Pathol 174:1705–1714PubMedCrossRef Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A et al (2009) Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am J Pathol 174:1705–1714PubMedCrossRef
26.
go back to reference Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109PubMedCrossRef Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109PubMedCrossRef
27.
go back to reference Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253PubMedCrossRef Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253PubMedCrossRef
28.
go back to reference Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRef Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRef
29.
go back to reference Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312PubMedCrossRef Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM (2001) Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 51:304–312PubMedCrossRef
30.
go back to reference Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724PubMedCrossRef Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724PubMedCrossRef
31.
go back to reference Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455PubMedCrossRef Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455PubMedCrossRef
32.
go back to reference Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRef Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRef
34.
go back to reference Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedCrossRef Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedCrossRef
35.
go back to reference Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566PubMedCrossRef Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566PubMedCrossRef
36.
37.
go back to reference Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112:3451–3461PubMedCrossRef Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K et al (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112:3451–3461PubMedCrossRef
38.
go back to reference Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB et al (2009) Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301:1253–1259PubMedCrossRef Maron BJ, Roberts WC, Arad M, Haas TS, Spirito P, Wright GB et al (2009) Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 301:1253–1259PubMedCrossRef
39.
go back to reference Martinet W, Knaapen MW, Kockx MM, De Meyer GR (2007) Autophagy in cardiovascular disease. Trends Mol Med 13:482–491PubMedCrossRef Martinet W, Knaapen MW, Kockx MM, De Meyer GR (2007) Autophagy in cardiovascular disease. Trends Mol Med 13:482–491PubMedCrossRef
40.
go back to reference Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922PubMedCrossRef Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922PubMedCrossRef
42.
go back to reference Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRef Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRef
43.
go back to reference Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624PubMedCrossRef Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624PubMedCrossRef
44.
go back to reference Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16:31–38PubMedCrossRef Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16:31–38PubMedCrossRef
45.
go back to reference Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRef Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T et al (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910PubMedCrossRef
46.
go back to reference Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351:2087–2100PubMedCrossRef Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351:2087–2100PubMedCrossRef
47.
go back to reference Perng MD, Wen SF, van den IJssel P, Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 15:2335–2346PubMedCrossRef Perng MD, Wen SF, van den IJssel P, Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 15:2335–2346PubMedCrossRef
48.
go back to reference Pfeifer U, Fohr J, Wilhelm W, Dammrich J (1987) Short-term inhibition of cardiac cellular autophagy by isoproterenol. J Mol Cell Cardiol 19:1179–1184PubMedCrossRef Pfeifer U, Fohr J, Wilhelm W, Dammrich J (1987) Short-term inhibition of cardiac cellular autophagy by isoproterenol. J Mol Cell Cardiol 19:1179–1184PubMedCrossRef
49.
go back to reference Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A et al (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439PubMedCrossRef Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A et al (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439PubMedCrossRef
50.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al (2010) Heart disease and stroke statistics―2011 update: a report from the American Heart Association. Circulation Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al (2010) Heart disease and stroke statistics―2011 update: a report from the American Heart Association. Circulation
51.
go back to reference Rothermel BA, Hill JA (2007) Myocyte autophagy in heart disease: friend or foe? Autophagy 3:632–634PubMed Rothermel BA, Hill JA (2007) Myocyte autophagy in heart disease: friend or foe? Autophagy 3:632–634PubMed
52.
53.
go back to reference Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A et al (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci USA 101:10132–10136PubMedCrossRef Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A et al (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci USA 101:10132–10136PubMedCrossRef
54.
go back to reference Shimomura H, Terasaki F, Hayashi T, Kitaura Y, Isomura T, Suma H (2001) Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65:965–968PubMedCrossRef Shimomura H, Terasaki F, Hayashi T, Kitaura Y, Isomura T, Suma H (2001) Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65:965–968PubMedCrossRef
55.
go back to reference Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118PubMedCrossRef Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118PubMedCrossRef
56.
go back to reference Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906PubMedCrossRef Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R et al (2000) Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406:902–906PubMedCrossRef
57.
go back to reference Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ et al (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci USA 105:9745–9750PubMedCrossRef Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ et al (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci USA 105:9745–9750PubMedCrossRef
58.
go back to reference Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM et al (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070–3078PubMedCrossRef Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM et al (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070–3078PubMedCrossRef
59.
go back to reference Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446PubMedCrossRef Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446PubMedCrossRef
60.
go back to reference Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852PubMedCrossRef Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM et al (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40:846–852PubMedCrossRef
61.
go back to reference Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95PubMedCrossRef Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95PubMedCrossRef
62.
go back to reference Wang X, Osinska H, Dorn GW 2nd, Nieman M, Lorenz JN, Gerdes AM et al (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103:2402–2407PubMed Wang X, Osinska H, Dorn GW 2nd, Nieman M, Lorenz JN, Gerdes AM et al (2001) Mouse model of desmin-related cardiomyopathy. Circulation 103:2402–2407PubMed
63.
go back to reference Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J et al (2001) Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 89:84–91PubMedCrossRef Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J et al (2001) Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 89:84–91PubMedCrossRef
64.
go back to reference Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109PubMedCrossRef Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109PubMedCrossRef
65.
go back to reference Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN (2000) On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol 32:161–175PubMedCrossRef Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN (2000) On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol 32:161–175PubMedCrossRef
66.
go back to reference Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH et al (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102:13807–13812PubMedCrossRef Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH et al (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102:13807–13812PubMedCrossRef
67.
go back to reference Yitzhaki S, Huang C, Liu W, Lee Y, Gustafsson AB, Mentzer RM Jr et al (2009) Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Res Cardiol 104:157–167PubMedCrossRef Yitzhaki S, Huang C, Liu W, Lee Y, Gustafsson AB, Mentzer RM Jr et al (2009) Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Res Cardiol 104:157–167PubMedCrossRef
68.
go back to reference Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946PubMedCrossRef Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946PubMedCrossRef
69.
go back to reference Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903PubMedCrossRef Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903PubMedCrossRef
70.
go back to reference Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA et al (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782–1793PubMedCrossRef Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA et al (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782–1793PubMedCrossRef
Metadata
Title
Autophagy in Cardiac Plasticity and Disease
Author
Joseph A. Hill
Publication date
01-03-2011
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2011
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-010-9883-6

Other articles of this Issue 3/2011

Pediatric Cardiology 3/2011 Go to the issue