Skip to main content
Top
Published in: Pediatric Cardiology 3/2010

01-04-2010 | Riley Symposium

22q11 Deletion Syndrome: A Role for TBX1 in Pharyngeal and Cardiovascular Development

Author: Peter J. Scambler

Published in: Pediatric Cardiology | Issue 3/2010

Login to get access

Abstract

Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of 22q11 deleted in humans with DiGeorge or velocardiofacial syndrome. Mice haploinsufficient for Tbx1 have phenotypes that recapitulate major features of the syndrome, notably abnormal growth and remodelling of the pharyngeal arch arteries. The Tbx1 haploinsufficiency phenotype is modified by genetic background and by mutations in putative downstream targets. Homozygous null mutations of Tbx1 have more severe defects including failure of outflow tract septation, and absence of the caudal pharyngeal arches. Tbx1 is a transcriptional activator, and loss of this activity has been linked to alterations in the expression of various genes involved in cardiovascular morphogenesis. In particular, Fgf and retinoic acid signalling are dysregulated in Tbx1 mutants. This article summarises the tissue specific and temporal requirements for Tbx1, and attempts to synthesis what is know about the developmental pathways under its control.
Literature
1.
go back to reference Aggarwal VS, Morrow BE (2008) Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome. Dev Disabil Res Rev 14:19–25CrossRefPubMed Aggarwal VS, Morrow BE (2008) Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome. Dev Disabil Res Rev 14:19–25CrossRefPubMed
2.
go back to reference Aggarwal VS, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanske A, Campione M, Morrow BE (2006) Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet 15:3219–3228CrossRefPubMed Aggarwal VS, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanske A, Campione M, Morrow BE (2006) Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet 15:3219–3228CrossRefPubMed
3.
go back to reference Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM, Morrow BE (2006) Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133:977–987CrossRefPubMed Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM, Morrow BE (2006) Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133:977–987CrossRefPubMed
4.
go back to reference Ataliotis P, Ivins S, Mohun TJ, Scambler PJ (2005) XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev Dyn 232:979–991CrossRefPubMed Ataliotis P, Ivins S, Mohun TJ, Scambler PJ (2005) XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev Dyn 232:979–991CrossRefPubMed
5.
go back to reference Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578CrossRefPubMed Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578CrossRefPubMed
6.
go back to reference Bergman A, Blennow E (2000) Inv dup(22), del(22)(q11) and r(22) in the father of a child with DiGeorge syndrome. Eur J Hum Genet 8:801–804CrossRefPubMed Bergman A, Blennow E (2000) Inv dup(22), del(22)(q11) and r(22) in the father of a child with DiGeorge syndrome. Eur J Hum Genet 8:801–804CrossRefPubMed
7.
go back to reference Braunstein EM, Crenshaw Iii EB, Morrow BE, Adams JC (2008) Cooperative Function of Tbx1 and Brn4 in the Periotic Mesenchyme is Necessary for Cochlea Formation. J Assoc Res Otolaryngol 9:33–43CrossRefPubMed Braunstein EM, Crenshaw Iii EB, Morrow BE, Adams JC (2008) Cooperative Function of Tbx1 and Brn4 in the Periotic Mesenchyme is Necessary for Cochlea Formation. J Assoc Res Otolaryngol 9:33–43CrossRefPubMed
8.
go back to reference Braunstein EM, Monks DC, Aggarwal VS, Arnold JS, Morrow BE (2009) Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC Dev Biol 9:31CrossRefPubMed Braunstein EM, Monks DC, Aggarwal VS, Arnold JS, Morrow BE (2009) Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC Dev Biol 9:31CrossRefPubMed
9.
go back to reference Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cremediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202CrossRefPubMed Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cremediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202CrossRefPubMed
10.
go back to reference Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245CrossRefPubMed Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245CrossRefPubMed
11.
go back to reference Cabuk F, Karabulut HG, Tuncali T, Karademir S, Bozdayi M, Tukun A (2007) TBX1 gene mutation screening in patients with non-syndromic Fallot tetralogy. Turk J Pediatr 49:61–68PubMed Cabuk F, Karabulut HG, Tuncali T, Karademir S, Bozdayi M, Tukun A (2007) TBX1 gene mutation screening in patients with non-syndromic Fallot tetralogy. Turk J Pediatr 49:61–68PubMed
12.
go back to reference Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, Scambler PJ (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183CrossRefPubMed Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, Scambler PJ (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183CrossRefPubMed
13.
go back to reference Carelle-Calmels N, Saugier-Veber P, Girard-Lemaire F, Rudolf G, Doray B, Guerin E, Kuhn P, Arrive M, Gilch C, Schmitt E, Fehrenbach S, Schnebelen A, Frebourg T, Flori E (2009) Genetic compensation in a human genomic disorder. N Engl J Med 360:1211–1216 Carelle-Calmels N, Saugier-Veber P, Girard-Lemaire F, Rudolf G, Doray B, Guerin E, Kuhn P, Arrive M, Gilch C, Schmitt E, Fehrenbach S, Schnebelen A, Frebourg T, Flori E (2009) Genetic compensation in a human genomic disorder. N Engl J Med 360:1211–1216
14.
go back to reference Carey AH, Kelly D, Halford S, Wadey R, Wilson D, Goodship J, Burn J, Paul T, Sharkey A, Dumanski J, Nordenskjold M, Williamson R, Scambler PJ (1992) Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet 51:964–970PubMed Carey AH, Kelly D, Halford S, Wadey R, Wilson D, Goodship J, Burn J, Paul T, Sharkey A, Dumanski J, Nordenskjold M, Williamson R, Scambler PJ (1992) Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet 51:964–970PubMed
15.
go back to reference Caterino M, Ruoppolo M, Fulcoli G, Huynth T, Orru S, Baldini A, Salvatore F (2009) Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: a comparative proteomic analysis. J Proteome Res 8(3):1515–1526 Caterino M, Ruoppolo M, Fulcoli G, Huynth T, Orru S, Baldini A, Salvatore F (2009) Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: a comparative proteomic analysis. J Proteome Res 8(3):1515–1526
16.
go back to reference Chen L, Fulcoli FG, Tang S, Baldini A (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851CrossRefPubMed Chen L, Fulcoli FG, Tang S, Baldini A (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851CrossRefPubMed
17.
go back to reference Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, Emanuel BS, Budarf ML (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277CrossRefPubMed Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, Emanuel BS, Budarf ML (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277CrossRefPubMed
18.
go back to reference Choi M, Klingensmith J (2009) Chordin is a modifier of Tbx1 for the craniofacial malformations of 22q11 deletion syndrome phenotypes in mouse. PLoS Genet 5:e1000395CrossRefPubMed Choi M, Klingensmith J (2009) Chordin is a modifier of Tbx1 for the craniofacial malformations of 22q11 deletion syndrome phenotypes in mouse. PLoS Genet 5:e1000395CrossRefPubMed
19.
go back to reference Conti E, Grifone N, Sarkozy A, Tandoi C, Marino B, Digilio MC, Mingarelli R, Pizzuti A, Dallapiccola B (2003) DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 Gene. Eur J Hum Genet 11:349–351CrossRefPubMed Conti E, Grifone N, Sarkozy A, Tandoi C, Marino B, Digilio MC, Mingarelli R, Pizzuti A, Dallapiccola B (2003) DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 Gene. Eur J Hum Genet 11:349–351CrossRefPubMed
21.
go back to reference Du Montcel ST, Mendizabal H, Ayme S, Levy A, Philip N (1996) Prevalence of 22q11 microdeletion. J Med Genet 33:719CrossRef Du Montcel ST, Mendizabal H, Ayme S, Levy A, Philip N (1996) Prevalence of 22q11 microdeletion. J Med Genet 33:719CrossRef
22.
go back to reference Edelmann L, Pandita R, Spiteri E, Funke B, Goldberg R, Palanisamy N, Chaganti RSK, Magenis RE, Shprintzen RJ, Morrow BE (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 8:1157–1167CrossRefPubMed Edelmann L, Pandita R, Spiteri E, Funke B, Goldberg R, Palanisamy N, Chaganti RSK, Magenis RE, Shprintzen RJ, Morrow BE (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 8:1157–1167CrossRefPubMed
23.
go back to reference Emanuel BS, Budarf BS, Scambler PJ (1998) The genetic basis of conotruncal heart defects: the chromosome 22q11.2 deletion. In: Rosenthal N, Harvey R (eds) Heart development. Academic Press, London, pp 463–478 Emanuel BS, Budarf BS, Scambler PJ (1998) The genetic basis of conotruncal heart defects: the chromosome 22q11.2 deletion. In: Rosenthal N, Harvey R (eds) Heart development. Academic Press, London, pp 463–478
24.
go back to reference Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070PubMed Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070PubMed
25.
go back to reference Feller SM (2001) Crk family adaptors-signalling complex formation and biological roles. Oncogene 20:6348–6371CrossRefPubMed Feller SM (2001) Crk family adaptors-signalling complex formation and biological roles. Oncogene 20:6348–6371CrossRefPubMed
26.
go back to reference Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13:157–163CrossRefPubMed Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13:157–163CrossRefPubMed
27.
go back to reference Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603PubMed Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603PubMed
28.
go back to reference Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML (2001) Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 38:E45CrossRefPubMed Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML (2001) Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 38:E45CrossRefPubMed
29.
go back to reference Goodship J, Cross I, Scambler P, Burn J (1995) Monozygotic twins with chromosome 22q11 deletion and discordant phenotype. J Med Genet 32:746–748CrossRefPubMed Goodship J, Cross I, Scambler P, Burn J (1995) Monozygotic twins with chromosome 22q11 deletion and discordant phenotype. J Med Genet 32:746–748CrossRefPubMed
30.
go back to reference Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 27:293–298CrossRefPubMed Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 27:293–298CrossRefPubMed
31.
go back to reference Guris DL, Duester G, Papaioannou VE, Imamoto A (2006) Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell 10:81–92CrossRefPubMed Guris DL, Duester G, Papaioannou VE, Imamoto A (2006) Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell 10:81–92CrossRefPubMed
32.
go back to reference Halford S, Lindsay E, Nayudu M, Carey AH, Baldini A, Scambler PJ (1993) Low-copy-repeat sequences flank the DiGeorge/velo-cardio-facial syndrome loci at 22q11. Hum Mol Genet 2:191–196CrossRefPubMed Halford S, Lindsay E, Nayudu M, Carey AH, Baldini A, Scambler PJ (1993) Low-copy-repeat sequences flank the DiGeorge/velo-cardio-facial syndrome loci at 22q11. Hum Mol Genet 2:191–196CrossRefPubMed
33.
go back to reference Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502CrossRefPubMed Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502CrossRefPubMed
34.
go back to reference Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475CrossRefPubMed Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475CrossRefPubMed
35.
go back to reference Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler PJ (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569CrossRefPubMed Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler PJ (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569CrossRefPubMed
36.
go back to reference Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291CrossRefPubMed Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291CrossRefPubMed
37.
go back to reference Jia L, Cheng L, Raper J (2005) Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 282:411–421CrossRefPubMed Jia L, Cheng L, Raper J (2005) Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 282:411–421CrossRefPubMed
38.
go back to reference Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453CrossRefPubMed Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453CrossRefPubMed
39.
go back to reference Kelly RG, Papaioannou VE (2007) Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap transgene. Dev Dyn 236:821–828CrossRefPubMed Kelly RG, Papaioannou VE (2007) Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap transgene. Dev Dyn 236:821–828CrossRefPubMed
40.
go back to reference Kita A, Imayoshi I, Hojo M, Kitagawa M, Kokubu H, Ohsawa R, Ohtsuka T, Kageyama R, Hashimoto N (2007) Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. Mol Endocrinol 21:1458–1466CrossRefPubMed Kita A, Imayoshi I, Hojo M, Kitagawa M, Kokubu H, Ohsawa R, Ohtsuka T, Kageyama R, Hashimoto N (2007) Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. Mol Endocrinol 21:1458–1466CrossRefPubMed
41.
go back to reference Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 23:1870–1875CrossRefPubMed Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 23:1870–1875CrossRefPubMed
42.
go back to reference Lammer EJ, Chen DT, Hoar ND, Agnish PJ, Benke JT, Braun CJ, Curry PM, Fernhoff AW, Grix AT, Lott JM, Richard JM, Sun SC (1986) Retinoic acid embryopathy. A new human teratogen and a mechanistic hypothesis. N Engl J Med 313:837–841CrossRef Lammer EJ, Chen DT, Hoar ND, Agnish PJ, Benke JT, Braun CJ, Curry PM, Fernhoff AW, Grix AT, Lott JM, Richard JM, Sun SC (1986) Retinoic acid embryopathy. A new human teratogen and a mechanistic hypothesis. N Engl J Med 313:837–841CrossRef
43.
go back to reference Larsson H, Klint P, Landgren E, Claesson-Welsh L (1999) Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem 274:25726–25734CrossRefPubMed Larsson H, Klint P, Landgren E, Claesson-Welsh L (1999) Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem 274:25726–25734CrossRefPubMed
44.
go back to reference Layman WS, McEwen DP, Beyer LA, Lalani SR, Fernbach SD, Oh E, Swaroop A, Hegg CC, Raphael Y, Martens JR, Martin DM (2009) Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet 18:1909–1923CrossRefPubMed Layman WS, McEwen DP, Beyer LA, Lalani SR, Fernbach SD, Oh E, Swaroop A, Hegg CC, Raphael Y, Martens JR, Martin DM (2009) Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet 18:1909–1923CrossRefPubMed
45.
go back to reference Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini A (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497CrossRefPubMed Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini A (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497CrossRefPubMed
46.
go back to reference Li JY, Lao Z, Joyner AL (2002) Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36:31–43CrossRefPubMed Li JY, Lao Z, Joyner AL (2002) Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36:31–43CrossRefPubMed
47.
go back to reference Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, Brown MC, Adams J, Morrow BE (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13:1577–1585CrossRefPubMed Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, Brown MC, Adams J, Morrow BE (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13:1577–1585CrossRefPubMed
48.
go back to reference Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537CrossRefPubMed Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537CrossRefPubMed
49.
go back to reference Lindsay EA, Baldini A (2001) Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region. Hum Mol Genet 10:997–1002CrossRefPubMed Lindsay EA, Baldini A (2001) Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region. Hum Mol Genet 10:997–1002CrossRefPubMed
50.
go back to reference Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah Y-C, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383PubMed Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah Y-C, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383PubMed
51.
go back to reference Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency identified by functional scanning of the DiGeorge syndrome region is the cause of aortic arch defects in mice. Nature 401:97–101CrossRef Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency identified by functional scanning of the DiGeorge syndrome region is the cause of aortic arch defects in mice. Nature 401:97–101CrossRef
52.
go back to reference Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, Tokooya K, St. Jore B, Lopez M, Pandita RK, Lia M, Carrion D, Schorle H, Kobler JR, Scambler PJ, Wynshaw-Boris A, Skoultchi A, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for the cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629CrossRefPubMed Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, Tokooya K, St. Jore B, Lopez M, Pandita RK, Lia M, Carrion D, Schorle H, Kobler JR, Scambler PJ, Wynshaw-Boris A, Skoultchi A, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for the cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629CrossRefPubMed
53.
go back to reference Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141CrossRefPubMed Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141CrossRefPubMed
54.
go back to reference Moon AM, Guris DL, Seo JH, Li L, Hammond J, Talbot A, Imamoto A (2006) Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell 10:71–80CrossRefPubMed Moon AM, Guris DL, Seo JH, Li L, Hammond J, Talbot A, Imamoto A (2006) Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell 10:71–80CrossRefPubMed
56.
go back to reference Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573CrossRefPubMed Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573CrossRefPubMed
57.
go back to reference Okano J, Sakai Y, Shiota K (2008) Retinoic acid down-regulates Tbx1 expression and induces abnormal differentiation of tongue muscles in fetal mice. Dev Dyn 237:3059–3070CrossRefPubMed Okano J, Sakai Y, Shiota K (2008) Retinoic acid down-regulates Tbx1 expression and induces abnormal differentiation of tongue muscles in fetal mice. Dev Dyn 237:3059–3070CrossRefPubMed
58.
go back to reference Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433CrossRefPubMed Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433CrossRefPubMed
59.
go back to reference Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O’Donovan MC, Owen MJ, Scambler PJ, Lindsay E (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103:7729–7734CrossRefPubMed Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O’Donovan MC, Owen MJ, Scambler PJ, Lindsay E (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103:7729–7734CrossRefPubMed
60.
go back to reference Piotrowski T, Ahn DG, Schilling TF, Nair S, Ruvinsky I, Geisler R, Rauch GJ, Haffter P, Zon LI, Zhou Y, Foott H, Dawid IB, Ho RK (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130:5043–5052CrossRefPubMed Piotrowski T, Ahn DG, Schilling TF, Nair S, Ruvinsky I, Geisler R, Rauch GJ, Haffter P, Zon LI, Zhou Y, Foott H, Dawid IB, Ho RK (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130:5043–5052CrossRefPubMed
61.
go back to reference Prescott K, Woodfine K, Stubbs P, Super M, Kerr B, Palmer R, Carter NP, Scambler P (2005) A novel 5q11.2 deletion detected by microarray comparative genomic hybridisation in a child referred as a case of suspected 22q11 deletion syndrome. Hum Genet 116:83–90CrossRefPubMed Prescott K, Woodfine K, Stubbs P, Super M, Kerr B, Palmer R, Carter NP, Scambler P (2005) A novel 5q11.2 deletion detected by microarray comparative genomic hybridisation in a child referred as a case of suspected 22q11 deletion syndrome. Hum Genet 116:83–90CrossRefPubMed
62.
go back to reference Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812CrossRefPubMed Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812CrossRefPubMed
63.
go back to reference Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, Vitelli F, Prescott K, Shaw-Smith C, Devriendt K, Bosman E, Steffes G, Steel KP, Simrick S, Basson MA, Illingworth E, Scambler PJ (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310PubMed Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, Vitelli F, Prescott K, Shaw-Smith C, Devriendt K, Bosman E, Steffes G, Steel KP, Simrick S, Basson MA, Illingworth E, Scambler PJ (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310PubMed
64.
go back to reference Rauch A, Devriendt K, Koch A, Rauch R, Gewillig M, Kraus C, Weyand M, Singer H, Reis A, Hofbeck M (2004) Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. J Med Genet 41:e40CrossRefPubMed Rauch A, Devriendt K, Koch A, Rauch R, Gewillig M, Kraus C, Weyand M, Singer H, Reis A, Hofbeck M (2004) Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. J Med Genet 41:e40CrossRefPubMed
65.
go back to reference Roberts C, Ivins SM, James CT, Scambler PJ (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232:928–938CrossRefPubMed Roberts C, Ivins SM, James CT, Scambler PJ (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232:928–938CrossRefPubMed
66.
go back to reference Roberts C, Ivins S, Cook AC, Baldini A, Scambler PJ (2006) Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet 15:3394–3410CrossRefPubMed Roberts C, Ivins S, Cook AC, Baldini A, Scambler PJ (2006) Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet 15:3394–3410CrossRefPubMed
67.
go back to reference Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Siedel H, Schuffenhauer S, Oechsler H, Belohradsky B, Priur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst J, Ignatius J, Green AJ, Winter RM, Breuton L, Brondum-Neilsen K, Stewart F, Van Essen T, Patton M, Patterson J, Scambler PJ (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804CrossRefPubMed Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Siedel H, Schuffenhauer S, Oechsler H, Belohradsky B, Priur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst J, Ignatius J, Green AJ, Winter RM, Breuton L, Brondum-Neilsen K, Stewart F, Van Essen T, Patton M, Patterson J, Scambler PJ (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804CrossRefPubMed
68.
go back to reference Ryckebusch L, Bertrand N, Bajolie F, Niederreither K, Kelly RG, Zaffran S (2009) Decreased levels of embryonic retinoic acid synthesis accelerates recovery from arterial growth delay in a mouse model of DIGeorge syndrome. Weinstein cardiovascular development conference, 87 pp. Ref Type: Abstract Ryckebusch L, Bertrand N, Bajolie F, Niederreither K, Kelly RG, Zaffran S (2009) Decreased levels of embryonic retinoic acid synthesis accelerates recovery from arterial growth delay in a mouse model of DIGeorge syndrome. Weinstein cardiovascular development conference, 87 pp. Ref Type: Abstract
69.
go back to reference Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225CrossRefPubMed Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225CrossRefPubMed
71.
go back to reference Shaikh TH, Kurahashi H, Emanuel BS (2001) Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 3:6–13CrossRefPubMed Shaikh TH, Kurahashi H, Emanuel BS (2001) Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 3:6–13CrossRefPubMed
72.
73.
go back to reference Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S, Kneer P, Von Der OM, Swillen A, Maes C, Gewillig M, Molin DG, Hellings P, Boetel T, Haardt M, Compernolle V, Dewerchin M, Plaisance S, Vlietinck R, Emanuel B, Gittenberger-de Groot AC, Scambler P, Morrow B, Driscol DA, Moons L, Esguerra CV, Carmeliet G, Behn-Krappa A, Devriendt K, Collen D, Conway SJ, Carmeliet P (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182CrossRefPubMed Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S, Kneer P, Von Der OM, Swillen A, Maes C, Gewillig M, Molin DG, Hellings P, Boetel T, Haardt M, Compernolle V, Dewerchin M, Plaisance S, Vlietinck R, Emanuel B, Gittenberger-de Groot AC, Scambler P, Morrow B, Driscol DA, Moons L, Esguerra CV, Carmeliet G, Behn-Krappa A, Devriendt K, Collen D, Conway SJ, Carmeliet P (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182CrossRefPubMed
74.
go back to reference Stoller JZ, Epstein JA (2005) Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Hum Mol Genet 14:885–892CrossRefPubMed Stoller JZ, Epstein JA (2005) Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Hum Mol Genet 14:885–892CrossRefPubMed
75.
go back to reference Taddei I, Morishima M, Huynh T, Lindsay EA (2001) Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proc Natl Acad Sci USA 98:11428–11431CrossRefPubMed Taddei I, Morishima M, Huynh T, Lindsay EA (2001) Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proc Natl Acad Sci USA 98:11428–11431CrossRefPubMed
76.
go back to reference Torres-Juan L, Rosell J, Morla M, Vidal-Pou C, Garcia-Algas F, de la Fuente MA, Juan M, Tubau A, Bachiller D, Bernues M, Perez-Granero A, Govea N, Busquets X, Heine-Suner D (2007) Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation. Eur J Hum Genet 15:658–663CrossRefPubMed Torres-Juan L, Rosell J, Morla M, Vidal-Pou C, Garcia-Algas F, de la Fuente MA, Juan M, Tubau A, Bachiller D, Bernues M, Perez-Granero A, Govea N, Busquets X, Heine-Suner D (2007) Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation. Eur J Hum Genet 15:658–663CrossRefPubMed
77.
go back to reference Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11:915–922CrossRefPubMed Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11:915–922CrossRefPubMed
78.
go back to reference Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611PubMed Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611PubMed
79.
go back to reference Vitelli F, Zhang Z, Huynh T, Sobotka A, Mupo A, Baldini A (2006) Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Dev Biol 295:559–570CrossRefPubMed Vitelli F, Zhang Z, Huynh T, Sobotka A, Mupo A, Baldini A (2006) Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Dev Biol 295:559–570CrossRefPubMed
80.
go back to reference Vitelli F, Huynh T, Baldini A (2009) Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis 47:188–195CrossRefPubMed Vitelli F, Huynh T, Baldini A (2009) Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis 47:188–195CrossRefPubMed
81.
go back to reference Wilson DI, Cross IE, Wren C, Scambler PJ, Burn J, Goodship J (1994) Minimum prevalence of chromosome 22q11 deletions. Am J Hum Genet 55:A169 Wilson DI, Cross IE, Wren C, Scambler PJ, Burn J, Goodship J (1994) Minimum prevalence of chromosome 22q11 deletions. Am J Hum Genet 55:A169
82.
go back to reference Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227CrossRefPubMed Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227CrossRefPubMed
83.
go back to reference Xu H, Cerrato F, Baldini A (2005) Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development 132:4387–4395CrossRefPubMed Xu H, Cerrato F, Baldini A (2005) Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development 132:4387–4395CrossRefPubMed
84.
go back to reference Xu H, Viola A, Zhang Z, Gerken CP, Lindsay-Illingworth EA, Baldini A (2006) Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev Biol 302:670–682CrossRefPubMed Xu H, Viola A, Zhang Z, Gerken CP, Lindsay-Illingworth EA, Baldini A (2006) Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev Biol 302:670–682CrossRefPubMed
85.
go back to reference Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373CrossRefPubMed Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373CrossRefPubMed
86.
go back to reference Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288CrossRefPubMed Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288CrossRefPubMed
87.
go back to reference Yobb TM, Somerville MJ, Willatt L, Firth HV, Harrison K, Mackenzie J, Gallo N, Morrow BE, Shaffer LG, Babcock M, Chernos J, Bernier F, Sprysak K, Christiansen J, Haase S, Elyas B, Lilley M, Bamforth S, McDermid HE (2005) Microduplication and triplication of 22q11.2: a highly variable syndrome. Am J Hum Genet 76:865–876CrossRefPubMed Yobb TM, Somerville MJ, Willatt L, Firth HV, Harrison K, Mackenzie J, Gallo N, Morrow BE, Shaffer LG, Babcock M, Chernos J, Bernier F, Sprysak K, Christiansen J, Haase S, Elyas B, Lilley M, Bamforth S, McDermid HE (2005) Microduplication and triplication of 22q11.2: a highly variable syndrome. Am J Hum Genet 76:865–876CrossRefPubMed
88.
go back to reference Zhang Z, Baldini A (2008) In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 17:150–157CrossRefPubMed Zhang Z, Baldini A (2008) In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 17:150–157CrossRefPubMed
89.
go back to reference Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E (2005) Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132:5307–5315CrossRefPubMed Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E (2005) Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132:5307–5315CrossRefPubMed
90.
go back to reference Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595CrossRefPubMed Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595CrossRefPubMed
91.
go back to reference Zhang LF, Gui YH, Zhong T, Wang YX, Qian LX, Dong YX, Jiang Q, Sun SN, Song HY (2007) Effect of external retinoic acid on Tbx1 gene during zebrafish embryogenesis. Zhonghua Er Ke Za Zhi 45:267–271PubMed Zhang LF, Gui YH, Zhong T, Wang YX, Qian LX, Dong YX, Jiang Q, Sun SN, Song HY (2007) Effect of external retinoic acid on Tbx1 gene during zebrafish embryogenesis. Zhonghua Er Ke Za Zhi 45:267–271PubMed
92.
go back to reference Zweier C, Sticht H, ydin-Yaylagul I, Campbell CE, Rauch A (2007) Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet 80:510–517CrossRefPubMed Zweier C, Sticht H, ydin-Yaylagul I, Campbell CE, Rauch A (2007) Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet 80:510–517CrossRefPubMed
Metadata
Title
22q11 Deletion Syndrome: A Role for TBX1 in Pharyngeal and Cardiovascular Development
Author
Peter J. Scambler
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 3/2010
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-009-9613-0

Other articles of this Issue 3/2010

Pediatric Cardiology 3/2010 Go to the issue