Skip to main content
Top
Published in: Pediatric Cardiology 5/2009

01-07-2009 | Riley Symposium

Analysis of Ventricular Hypertrabeculation and Noncompaction Using Genetically Engineered Mouse Models

Authors: Hanying Chen, Wenjun Zhang, Deqiang Li, Tim M. Cordes, R. Mark Payne, Weinian Shou

Published in: Pediatric Cardiology | Issue 5/2009

Login to get access

Abstract

Ventricular trabeculation and compaction are two of the many essential steps for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with ventricular compact zone deficiencies (hypoplastic wall), which commonly lead to embryonic heart failure and early embryonic lethality. In contrast, hypertrabeculation and lack of ventricular wall compaction (noncompaction) are closely related defects in cardiac embryogenesis associated with left ventricular noncompaction, a genetically heterogeneous disorder. Here we summarize our recent findings through the analyses of several genetically engineered mouse models that have defects in cardiac trabeculation and compaction. Our data indicate that cellular growth and differentiation signaling pathways are keys in these ventricular morphogenetic events.
Literature
1.
go back to reference Anderson RH, Webb S et al (2003) Development of the heart: (2) Septation of the atriums and ventricles. Heart 89(8):949–958PubMedCrossRef Anderson RH, Webb S et al (2003) Development of the heart: (2) Septation of the atriums and ventricles. Heart 89(8):949–958PubMedCrossRef
2.
go back to reference Anderson RH, Webb S et al (2003) Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 89(9):1110–1118PubMedCrossRef Anderson RH, Webb S et al (2003) Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 89(9):1110–1118PubMedCrossRef
3.
go back to reference Bartman T, Hove J (2005) Mechanics and function in heart morphogenesis. Dev Dynam 233(2):373–381CrossRef Bartman T, Hove J (2005) Mechanics and function in heart morphogenesis. Dev Dynam 233(2):373–381CrossRef
4.
go back to reference Besson A, Dowdy SF et al (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169PubMedCrossRef Besson A, Dowdy SF et al (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169PubMedCrossRef
5.
go back to reference Bierer BE, Mattila PS et al (1990) Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA 87(23):9231–9235PubMedCrossRef Bierer BE, Mattila PS et al (1990) Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA 87(23):9231–9235PubMedCrossRef
6.
go back to reference Brutsaer DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263(4; Pt 2):H985–H1002 Brutsaer DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263(4; Pt 2):H985–H1002
7.
go back to reference Cameron AM, Nucifora FC Jr et al (1997) FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272(44):27582–27588PubMedCrossRef Cameron AM, Nucifora FC Jr et al (1997) FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272(44):27582–27588PubMedCrossRef
8.
go back to reference Cameron AM, Steiner JP et al (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472PubMedCrossRef Cameron AM, Steiner JP et al (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472PubMedCrossRef
9.
go back to reference Chen H, Shi S et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231PubMedCrossRef Chen H, Shi S et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231PubMedCrossRef
10.
go back to reference Chen Q, Chen H et al (2009) Smad7 is required for the development and function of heart. J Biol Chem 284(1):292–300PubMedCrossRef Chen Q, Chen H et al (2009) Smad7 is required for the development and function of heart. J Biol Chem 284(1):292–300PubMedCrossRef
11.
go back to reference Clendenon JL, Phillips CL et al (2002) Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am J Physiol Cell Physiol 282(1):C213–C218PubMed Clendenon JL, Phillips CL et al (2002) Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am J Physiol Cell Physiol 282(1):C213–C218PubMed
12.
go back to reference Cook AC, Yates RW et al (2004) Normal and abnormal fetal cardiac anatomy. Prenat Diagn 24(13):1032–1048PubMedCrossRef Cook AC, Yates RW et al (2004) Normal and abnormal fetal cardiac anatomy. Prenat Diagn 24(13):1032–1048PubMedCrossRef
13.
go back to reference Gourdie RG, Kubalak S et al (1999) Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med 9(1–2):18–26PubMedCrossRef Gourdie RG, Kubalak S et al (1999) Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med 9(1–2):18–26PubMedCrossRef
14.
go back to reference Hagopian M, Spiro D (1970) Derivation of the Z line in the embryonic chick heart. J Cell Biol 44(3):683–687PubMedCrossRef Hagopian M, Spiro D (1970) Derivation of the Z line in the embryonic chick heart. J Cell Biol 44(3):683–687PubMedCrossRef
15.
go back to reference Heldin CH, Miyazono K et al (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471PubMedCrossRef Heldin CH, Miyazono K et al (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471PubMedCrossRef
16.
17.
go back to reference Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat (Basel) 130(3):264–274CrossRef Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat (Basel) 130(3):264–274CrossRef
18.
go back to reference Jayaraman T, Brillantes AM et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267(14):9474–9477PubMed Jayaraman T, Brillantes AM et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267(14):9474–9477PubMed
19.
go back to reference King T, Bland Y et al (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dynam 225(2):212–215CrossRef King T, Bland Y et al (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dynam 225(2):212–215CrossRef
20.
go back to reference Klaassen S, Probst S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901PubMedCrossRef Klaassen S, Probst S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901PubMedCrossRef
21.
go back to reference Kochilas LK, Li J et al (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(5; Pt 1):635–642PubMedCrossRef Kochilas LK, Li J et al (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(5; Pt 1):635–642PubMedCrossRef
22.
go back to reference Lee Y, Song AJ et al (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86(9):932–938PubMed Lee Y, Song AJ et al (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86(9):932–938PubMed
23.
go back to reference Meilhac SM, Kelly RG et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130(16):3877–3889PubMedCrossRef Meilhac SM, Kelly RG et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130(16):3877–3889PubMedCrossRef
24.
go back to reference Mikawa T, Borisov A et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dynam 193(1):11–23 Mikawa T, Borisov A et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dynam 193(1):11–23
25.
go back to reference Mikawa T, Cohen-Gould L et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dynam 195(2):133–141 Mikawa T, Cohen-Gould L et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dynam 195(2):133–141
26.
go back to reference Mikawa T, Gourdie RG et al (2002) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153; discussion 153–156CrossRef Mikawa T, Gourdie RG et al (2002) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153; discussion 153–156CrossRef
27.
go back to reference Moorman A, Webb S et al (2003) Development of the heart: (1) Formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814PubMedCrossRef Moorman A, Webb S et al (2003) Development of the heart: (1) Formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814PubMedCrossRef
28.
go back to reference Moorman AF, Christoffels VM et al (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond Ser B Biol Sci 362(1484):1257–1265CrossRef Moorman AF, Christoffels VM et al (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond Ser B Biol Sci 362(1484):1257–1265CrossRef
29.
go back to reference Neuhaus H, Rosen V et al (1999) Heart specific expression of mouse BMP-10, a novel member of the TGF-beta superfamily. Mech Dev 80(2):181–184PubMedCrossRef Neuhaus H, Rosen V et al (1999) Heart specific expression of mouse BMP-10, a novel member of the TGF-beta superfamily. Mech Dev 80(2):181–184PubMedCrossRef
30.
go back to reference Pashmforoush M, Lu JT et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386PubMedCrossRef Pashmforoush M, Lu JT et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386PubMedCrossRef
31.
32.
go back to reference Pignatelli RH, McMahon CJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108(21):2672–2678PubMedCrossRef Pignatelli RH, McMahon CJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108(21):2672–2678PubMedCrossRef
33.
go back to reference Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880 Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880
34.
go back to reference Ronna KC (1977) Myogenesis and contraction in the early embryonic heart of the rainbow trout. An electron microscopic study. Cell Tissue Res 180(1):123–132PubMed Ronna KC (1977) Myogenesis and contraction in the early embryonic heart of the rainbow trout. An electron microscopic study. Cell Tissue Res 180(1):123–132PubMed
35.
go back to reference Rumyantsev PP, Krylova MI (1990) Ultrastructure of myofibers and cells synthesizing DNA in the developing and regenerating lymph-heart muscles. Int Rev Cytol 120:1–52PubMedCrossRef Rumyantsev PP, Krylova MI (1990) Ultrastructure of myofibers and cells synthesizing DNA in the developing and regenerating lymph-heart muscles. Int Rev Cytol 120:1–52PubMedCrossRef
36.
go back to reference Sandhu R, Finkelhor RS et al (2008) Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography 25(1):8–12PubMed Sandhu R, Finkelhor RS et al (2008) Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography 25(1):8–12PubMed
37.
go back to reference Schreiber SL, Crabtree GR (1995) Immunophilins, ligands, and the control of signal transduction. Harvey Lect 91:99–114PubMed Schreiber SL, Crabtree GR (1995) Immunophilins, ligands, and the control of signal transduction. Harvey Lect 91:99–114PubMed
38.
go back to reference Sedmera D, Pexieder T et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337PubMedCrossRef Sedmera D, Pexieder T et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337PubMedCrossRef
39.
go back to reference Shi W, Chen H et al (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261(2):371–380PubMedCrossRef Shi W, Chen H et al (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261(2):371–380PubMedCrossRef
40.
go back to reference Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRef Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRef
41.
go back to reference Shou W, Aghdasi B et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492PubMedCrossRef Shou W, Aghdasi B et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492PubMedCrossRef
42.
go back to reference Taber LA (1998) Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69(2–3):237–255PubMedCrossRef Taber LA (1998) Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69(2–3):237–255PubMedCrossRef
43.
go back to reference Timerman AP, Ogunbumni E et al (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268(31):22992–22999PubMed Timerman AP, Ogunbumni E et al (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268(31):22992–22999PubMed
44.
go back to reference Wang T, Li BY et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444PubMedCrossRef Wang T, Li BY et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444PubMedCrossRef
45.
go back to reference Weiford BC, Subbarao VD et al (2004) Noncompaction of the ventricular myocardium. Circulation 109(24):2965–2971PubMedCrossRef Weiford BC, Subbarao VD et al (2004) Noncompaction of the ventricular myocardium. Circulation 109(24):2965–2971PubMedCrossRef
46.
go back to reference Xing Y, Ichida F et al (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77PubMedCrossRef Xing Y, Ichida F et al (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77PubMedCrossRef
Metadata
Title
Analysis of Ventricular Hypertrabeculation and Noncompaction Using Genetically Engineered Mouse Models
Authors
Hanying Chen
Wenjun Zhang
Deqiang Li
Tim M. Cordes
R. Mark Payne
Weinian Shou
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 5/2009
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-009-9406-5

Other articles of this Issue 5/2009

Pediatric Cardiology 5/2009 Go to the issue