Skip to main content
Top
Published in: Pediatric Cardiology 5/2009

01-07-2009 | Riley Symposium

Monitoring Clonal Growth in the Developing Ventricle

Authors: Lucile Miquerol, Robert G. Kelly

Published in: Pediatric Cardiology | Issue 5/2009

Login to get access

Abstract

Understanding the etiology of congenital heart defects depends on a detailed knowledge of the morphogenetic events underlying cardiac development. Deciphering the developmental processes and cell behaviors resulting in the formation of a four-chambered heart requires techniques by which the destiny of individual cells can be traced during development. Ideally, such approaches provide information on progenitor cells and growth properties of clonally related myocytes. In the avian system, clonal analysis based on the use of replication-defective retroviral labeling led to a model for growth of the ventricular wall from polyclonal transmural cones of myocardial cells. In the mouse, the nlaacZ retrospective clonal analysis system has proved to be a powerful technique for studying different aspects of cardiac morphogenesis. Morphologic and histologic analyses of clonally related myocytes at early stages of development have provided genetic evidence for the formation of the heart tube from two cell lineages. Additional aspects of cardiac morphogenesis, including formation of the interventricular septum and myocardial outflow tract, and more recently, the origin of the ventricular conduction system, have been studied using this system. This brief review discusses how the nlaacZ system has provided new insights into the divergent properties of clonally related cells in these different regions of the developing heart.
Literature
1.
go back to reference Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34PubMedCrossRef Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34PubMedCrossRef
2.
go back to reference Bonnerot C, Nicolas JF (1993) Clonal analysis in the intact mouse embryos by intragenic homologour recombination. C R Acad Sci 316:1207–1217 Bonnerot C, Nicolas JF (1993) Clonal analysis in the intact mouse embryos by intragenic homologour recombination. C R Acad Sci 316:1207–1217
3.
go back to reference Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedCrossRef Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedCrossRef
4.
go back to reference Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049PubMed Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049PubMed
5.
go back to reference de la Cruz M, Sanchez-Gomez C, Palomino M (1989) The primitive cardiac regions in the straight heart tube (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–131 de la Cruz M, Sanchez-Gomez C, Palomino M (1989) The primitive cardiac regions in the straight heart tube (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 165:121–131
6.
go back to reference Eberhard D, Jockusch H (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev Biol 278:336–346PubMedCrossRef Eberhard D, Jockusch H (2005) Patterns of myocardial histogenesis as revealed by mouse chimeras. Dev Biol 278:336–346PubMedCrossRef
7.
go back to reference Franco D, Meilhac SM, Christoffels VM et al (2006) Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol 294:366–375PubMedCrossRef Franco D, Meilhac SM, Christoffels VM et al (2006) Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart. Dev Biol 294:366–375PubMedCrossRef
8.
go back to reference Garcia-Martinez V, Schoenwolf GC (1993) Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719PubMedCrossRef Garcia-Martinez V, Schoenwolf GC (1993) Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719PubMedCrossRef
9.
go back to reference Gourdie RG, Mima T, Thompson RP, Mikawa T (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431PubMed Gourdie RG, Mima T, Thompson RP, Mikawa T (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431PubMed
10.
go back to reference Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1-expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475PubMedCrossRef Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1-expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475PubMedCrossRef
11.
go back to reference Kelly RG, Zammit PS, Buckingham ME (1999) Cardiosensor mice and transcriptional subdomains of the vertebrate heart. Trends Cardiovasc Med 9:3–10PubMedCrossRef Kelly RG, Zammit PS, Buckingham ME (1999) Cardiosensor mice and transcriptional subdomains of the vertebrate heart. Trends Cardiovasc Med 9:3–10PubMedCrossRef
12.
go back to reference Kitajima S, Miyagawa-Tomita S, Inoue T et al (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402PubMedCrossRef Kitajima S, Miyagawa-Tomita S, Inoue T et al (2006) Mesp1-nonexpressing cells contribute to the ventricular cardiac conduction system. Dev Dyn 235:395–402PubMedCrossRef
13.
go back to reference Mathis L, Nicolas JF (2002) Cellular patterning of the vertebrate embryo. Trends Genet 18:627–635PubMedCrossRef Mathis L, Nicolas JF (2002) Cellular patterning of the vertebrate embryo. Trends Genet 18:627–635PubMedCrossRef
14.
go back to reference Meilhac SM, Kelly RG, Rocancourt D et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889PubMedCrossRef Meilhac SM, Kelly RG, Rocancourt D et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889PubMedCrossRef
15.
go back to reference Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698PubMedCrossRef Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698PubMedCrossRef
16.
go back to reference Meilhac SM, Esner M, Kerszberg M et al (2004) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109PubMedCrossRef Meilhac SM, Esner M, Kerszberg M et al (2004) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109PubMedCrossRef
17.
go back to reference Mikawa T, Borisov A, Brown AM, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 193:11–23PubMed Mikawa T, Borisov A, Brown AM, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dyn 193:11–23PubMed
18.
go back to reference Mikawa T, Cohen-Gould L, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dyn 195:133–141PubMed Mikawa T, Cohen-Gould L, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dyn 195:133–141PubMed
19.
go back to reference Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Sem Cell Dev Biol 18:90–100CrossRef Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Sem Cell Dev Biol 18:90–100CrossRef
20.
go back to reference Miquerol L, Meysen S, Mangoni M et al (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86PubMedCrossRef Miquerol L, Meysen S, Mangoni M et al (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86PubMedCrossRef
21.
go back to reference Moorman AF, de Jong F, Denyn MM, Lamers WH (1998) Development of the cardiac conduction system. Circ Res 82:629–644PubMed Moorman AF, de Jong F, Denyn MM, Lamers WH (1998) Development of the cardiac conduction system. Circ Res 82:629–644PubMed
22.
go back to reference Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMedCrossRef Myers DC, Fishman GI (2003) Molecular and functional maturation of the murine cardiac conduction system. Trends Cardiovasc Med 13:289–295PubMedCrossRef
23.
go back to reference Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45:321–339PubMedCrossRef Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45:321–339PubMedCrossRef
24.
go back to reference Redkar A, Montgomery M, Litvin J (2001) Fate map of early avian cardiac progenitor cells. Development 128:2269–2279PubMed Redkar A, Montgomery M, Litvin J (2001) Fate map of early avian cardiac progenitor cells. Development 128:2269–2279PubMed
25.
go back to reference Stalsberg H, De Haan RL (1969) The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19:128–159PubMedCrossRef Stalsberg H, De Haan RL (1969) The precardiac areas and formation of the tubular heart in the chick embryo. Dev Biol 19:128–159PubMedCrossRef
26.
go back to reference Theveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148PubMedCrossRef Theveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148PubMedCrossRef
27.
go back to reference Verzi MP, McCulley DJ, De Val S et al (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145PubMedCrossRef Verzi MP, McCulley DJ, De Val S et al (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145PubMedCrossRef
28.
go back to reference Wilkie AL, Jordan AJ, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129:3349–3357PubMed Wilkie AL, Jordan AJ, Jackson IJ (2002) Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 129:3349–3357PubMed
29.
go back to reference Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268PubMedCrossRef Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268PubMedCrossRef
Metadata
Title
Monitoring Clonal Growth in the Developing Ventricle
Authors
Lucile Miquerol
Robert G. Kelly
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
Pediatric Cardiology / Issue 5/2009
Print ISSN: 0172-0643
Electronic ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-008-9371-4

Other articles of this Issue 5/2009

Pediatric Cardiology 5/2009 Go to the issue