Skip to main content
Top
Published in: European Journal of Plastic Surgery 5/2013

01-05-2013 | Experimental Study

Intradermal injection of GFP-producing adipose stromal cells promotes survival of random-pattern skin flaps in rats

Authors: Vasileios Karathanasis, Spyros Petrakis, Konstantina Topouridou, Eleni Koliakou, George Koliakos, Efterpi Demiri

Published in: European Journal of Plastic Surgery | Issue 5/2013

Login to get access

Abstract

Background

Tissue necrosis is a common complication in operations that use skin flaps for reconstructive surgery. Here we demonstrate the beneficial effect of autologous genetically modified adipose-derived stromal cells (ASCs) in the survival of random-pattern skin flaps.

Methods

ASCs were isolated from the inguinal fat pad of Wistar rats and genetically modified in order to permanently produce green fluorescent protein (GFP) using the Sleeping Beauty transposon technology. Autologous GFP-producing cells were then injected intradermally into random-pattern skin flaps planned on the dorsal area of rats.

Results

Injection of ASCs resulted in significant improvement of skin flap survival. Histological analysis showed that the connective tissue was almost intact in skin flaps treated with ASCs in contrast to disorganized tissues from mock-treated skin flaps. GFP ASCs were detected in the endothelium of blood vessels co-expressing the endothelial marker von Willebrand factor, thus suggesting that they promote blood vessel regeneration.

Conclusions

These findings indicate that transplantation of autologous GFP ASCs improve survival of skin flaps. This methodology suggests that the use of genetically modified ASCs producing, e.g., angiogenic factors may facilitate survival and integration of flaps in plastic surgery.
Literature
1.
go back to reference Rinsch C, Quinodoz P, Pittet B, Alizadeh N, Baetens D, Montandon D, Aebischer P, Pepper MS (2001) Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8(7):523–533. doi:10.1038/sj.gt.3301436 PubMedCrossRef Rinsch C, Quinodoz P, Pittet B, Alizadeh N, Baetens D, Montandon D, Aebischer P, Pepper MS (2001) Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8(7):523–533. doi:10.​1038/​sj.​gt.​3301436 PubMedCrossRef
2.
go back to reference Simman R, Craft C, McKinney B (2005) Improved survival of ischemic random skin flaps through the use of bone marrow nonhematopoietic stem cells and angiogenic growth factors. Ann Plast Surg 54(5):546–552PubMedCrossRef Simman R, Craft C, McKinney B (2005) Improved survival of ischemic random skin flaps through the use of bone marrow nonhematopoietic stem cells and angiogenic growth factors. Ann Plast Surg 54(5):546–552PubMedCrossRef
3.
go back to reference Zhang F, Oswald T, Lin S, Cai Z, Lei M, Jones M, Angel MF, Lineaweaver WC (2003) Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. Br J Plast Surg 56(7):653–659PubMedCrossRef Zhang F, Oswald T, Lin S, Cai Z, Lei M, Jones M, Angel MF, Lineaweaver WC (2003) Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. Br J Plast Surg 56(7):653–659PubMedCrossRef
4.
go back to reference Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107(10):1359–1365. doi:10.1161/01.CIR.0000061911.47710.8A PubMedCrossRef Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107(10):1359–1365. doi:10.​1161/​01.​CIR.​0000061911.​47710.​8A PubMedCrossRef
6.
go back to reference Koh YJ, Koh BI, Kim H, Joo HJ, Jin HK, Jeon J, Choi C, Lee DH, Chung JH, Cho CH, Park WS, Ryu JK, Suh JK, Koh GY (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31(5):1141–1150. doi:10.1161/ATVBAHA.110.218206 PubMedCrossRef Koh YJ, Koh BI, Kim H, Joo HJ, Jin HK, Jeon J, Choi C, Lee DH, Chung JH, Cho CH, Park WS, Ryu JK, Suh JK, Koh GY (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31(5):1141–1150. doi:10.​1161/​ATVBAHA.​110.​218206 PubMedCrossRef
7.
go back to reference Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76(7):1750–1760 Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76(7):1750–1760
8.
go back to reference Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85. doi:10.1161/CIRCRESAHA.107.159475 PubMedCrossRef Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85. doi:10.​1161/​CIRCRESAHA.​107.​159475 PubMedCrossRef
10.
go back to reference Sheng L, Yang M, Li H, Du Z, Yang Y, Li Q (2011) Transplantation of adipose stromal cells promotes neovascularization of random skin flaps. Tohoku J Exp Med 224(3):229–234PubMedCrossRef Sheng L, Yang M, Li H, Du Z, Yang Y, Li Q (2011) Transplantation of adipose stromal cells promotes neovascularization of random skin flaps. Tohoku J Exp Med 224(3):229–234PubMedCrossRef
11.
13.
go back to reference Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663PubMedCrossRef Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109(5):656–663PubMedCrossRef
14.
go back to reference Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298PubMedCrossRef Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298PubMedCrossRef
15.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi:10.1091/mbc.E02-02-0105 PubMedCrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi:10.​1091/​mbc.​E02-02-0105 PubMedCrossRef
16.
go back to reference Petrakis S, Rasko T, Mates L, Ivics Z, Izsvak Z, Kouzi-Koliakou K, Koliakos G (2012) Gateway compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells. Biotechnol J. doi:10.1002/biot.201100471 Petrakis S, Rasko T, Mates L, Ivics Z, Izsvak Z, Kouzi-Koliakou K, Koliakos G (2012) Gateway compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells. Biotechnol J. doi:10.​1002/​biot.​201100471
17.
go back to reference McFarlane RM, Deyoung G, Henry RA (1965) The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 35:177–182PubMedCrossRef McFarlane RM, Deyoung G, Henry RA (1965) The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 35:177–182PubMedCrossRef
18.
go back to reference Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvak Z (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761. doi:10.1038/ng.343 PubMedCrossRef Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, VandenDriessche T, Ivics Z, Izsvak Z (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6):753–761. doi:10.​1038/​ng.​343 PubMedCrossRef
19.
go back to reference Lip GY, Blann A (1997) von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 34(2):255–265PubMedCrossRef Lip GY, Blann A (1997) von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 34(2):255–265PubMedCrossRef
20.
go back to reference Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B (2009) Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 7:29. doi:10.1186/1479-5876-7-29 PubMedCrossRef Riordan NH, Ichim TE, Min WP, Wang H, Solano F, Lara F, Alfaro M, Rodriguez JP, Harman RJ, Patel AN, Murphy MP, Lee RR, Minev B (2009) Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J Transl Med 7:29. doi:10.​1186/​1479-5876-7-29 PubMedCrossRef
22.
go back to reference Daniel RK, Kerrigan CL (eds) (1990) Principles and physiology of skin flap surgery, vol 1. Plastic surgery. Saunders, Philadelphia Daniel RK, Kerrigan CL (eds) (1990) Principles and physiology of skin flap surgery, vol 1. Plastic surgery. Saunders, Philadelphia
Metadata
Title
Intradermal injection of GFP-producing adipose stromal cells promotes survival of random-pattern skin flaps in rats
Authors
Vasileios Karathanasis
Spyros Petrakis
Konstantina Topouridou
Eleni Koliakou
George Koliakos
Efterpi Demiri
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
European Journal of Plastic Surgery / Issue 5/2013
Print ISSN: 0930-343X
Electronic ISSN: 1435-0130
DOI
https://doi.org/10.1007/s00238-013-0810-y

Other articles of this Issue 5/2013

European Journal of Plastic Surgery 5/2013 Go to the issue