Skip to main content
Top
Published in: Neuroradiology 5/2019

Open Access 01-05-2019 | Glioma | Diagnostic Neuroradiology

Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast enhancement and linear/macrocyclic agents

Authors: Aida Kiviniemi, Maria Gardberg, Paul Ek, Janek Frantzén, Johan Bobacka, Heikki Minn

Published in: Neuroradiology | Issue 5/2019

Login to get access

Abstract

Purpose

To quantitate gadolinium deposits in gliomas and adjacent normal brain specimens, and to evaluate their association with tumor contrast enhancement and the type of gadolinium-based contrast agent (GBCA) used.

Methods

A total of 69 patients with primary glioma who underwent contrast-enhanced magnetic resonance imaging (MRI) prior to surgery were included in this retrospective study. Gadolinium was measured from histologically viable tumor, normal brain, and necrosis within the sample, when available, using inductively coupled plasma mass spectrometry (ICP-MS). Tumor contrast enhancement was categorized as none, minimal, or noticeable. Differences in gadolinium deposits by contrast enhancement and GBCA type were assessed.

Results

Seven patients received linear GBCA and 62 macrocyclic, respectively. At the time of surgery, gadolinium deposits were detected in 39 out of 69 (57%) tumor samples, 8 out of 13 (62%) normal brain, and 12 out of 14 (86%) necrotic specimens. Gadolinium was detected in both enhancing and non-enhancing tumors, but was greatest in gliomas with noticeable enhancement (p = 0.02). Administration of linear agents gadodiamide and gadopentetate dimeglumine resulted in significantly higher tumor gadolinium relative to macrocyclic gadoterate meglumine (p < 0.01 and p < 0.05, respectively). Normal brain and necrosis also showed higher gadolinium after exposure to linear gadodiamide (both p < 0.05). In multivariate regression, GBCA type (linear/macrocyclic) was the most powerful predictor of tumor gadolinium retention (p < 0.001).

Conclusion

Gadolinium can be detected in both enhancing and non-enhancing gliomas, neighboring normal brain, and necrosis. Gadolinium retention is higher after exposure to linear GBCAs compared with the macrocyclic gadoterate meglumine.
Literature
1.
go back to reference Idee J-M, Port M, Robic C et al (2009) Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 30:1249–1258CrossRefPubMed Idee J-M, Port M, Robic C et al (2009) Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 30:1249–1258CrossRefPubMed
2.
go back to reference Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C. Investig Radiol 43:817–828CrossRef Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C. Investig Radiol 43:817–828CrossRef
3.
go back to reference Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Investig Radiol 30:372–380CrossRef Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Investig Radiol 30:372–380CrossRef
4.
go back to reference Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed Grobner T (2006) Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108CrossRefPubMed
5.
go back to reference Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMed
6.
go back to reference Errante Y, Cirimele V, Mallio CA, di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig Radiol 49:685–690CrossRef Errante Y, Cirimele V, Mallio CA, di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig Radiol 49:685–690CrossRef
7.
go back to reference Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. Am J Neuroradiol 36:1859–1865CrossRefPubMed Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM (2015) Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. Am J Neuroradiol 36:1859–1865CrossRefPubMed
8.
go back to reference Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Investig Radiol 50:743–748CrossRef Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A (2015) Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Investig Radiol 50:743–748CrossRef
9.
go back to reference Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J’, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J’, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809CrossRefPubMed
10.
go back to reference Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer HP, Bendszus M (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMed
11.
go back to reference Radbruch A, Haase R, Kieslich PJ, Weberling LD, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2017) No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology 282:699–707CrossRefPubMed Radbruch A, Haase R, Kieslich PJ, Weberling LD, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2017) No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology 282:699–707CrossRefPubMed
12.
go back to reference McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782CrossRefPubMed
13.
go back to reference Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J’, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J’, Haruyama T, Kitajima K, Furui S (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276:228–232CrossRefPubMed
14.
go back to reference Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue. Investig Radiol 51:447–453CrossRef Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR (2016) Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue. Investig Radiol 51:447–453CrossRef
15.
go back to reference Xia D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 51:1126–1136CrossRefPubMed Xia D, Davis RL, Crawford JA, Abraham JL (2010) Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 51:1126–1136CrossRefPubMed
16.
go back to reference Thomsen, Volker; Schatzlein, Debbie; Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18:112–114 Thomsen, Volker; Schatzlein, Debbie; Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18:112–114
17.
go back to reference McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554CrossRefPubMed McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554CrossRefPubMed
18.
go back to reference Fingerhut S, Sperling M, Holling M, Niederstadt T, Allkemper T, Radbruch A, Heindel W, Paulus W, Jeibmann A, Karst U (2018) Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol 136:127–138CrossRefPubMed Fingerhut S, Sperling M, Holling M, Niederstadt T, Allkemper T, Radbruch A, Heindel W, Paulus W, Jeibmann A, Karst U (2018) Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol 136:127–138CrossRefPubMed
19.
go back to reference Kanda T, Nakai Y, Hagiwara A, Oba H, Toyoda K, Furui S (2017) Distribution and chemical forms of gadolinium in the brain: a review. Br J Radiol 90:20170115CrossRefPubMedPubMedCentral Kanda T, Nakai Y, Hagiwara A, Oba H, Toyoda K, Furui S (2017) Distribution and chemical forms of gadolinium in the brain: a review. Br J Radiol 90:20170115CrossRefPubMedPubMedCentral
20.
go back to reference Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229CrossRefPubMed Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229CrossRefPubMed
21.
go back to reference Öner AY, Barutcu B, Aykol Ş, Tali ET (2017) Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Investig Radiol 52:195–197CrossRef Öner AY, Barutcu B, Aykol Ş, Tali ET (2017) Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Investig Radiol 52:195–197CrossRef
22.
go back to reference Berger F, Kubik-Huch RA, Niemann T, Schmid HR, Poetzsch M, Froehlich JM, Beer JH, Thali MJ, Kraemer T (2018) Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans. Radiology 288:703–709CrossRefPubMed Berger F, Kubik-Huch RA, Niemann T, Schmid HR, Poetzsch M, Froehlich JM, Beer JH, Thali MJ, Kraemer T (2018) Gadolinium distribution in cerebrospinal fluid after administration of a gadolinium-based MR contrast agent in humans. Radiology 288:703–709CrossRefPubMed
23.
go back to reference Nehra AK, McDonald RJ, Bluhm AM et al (2018) Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study. Radiology 288:416–423CrossRefPubMed Nehra AK, McDonald RJ, Bluhm AM et al (2018) Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study. Radiology 288:416–423CrossRefPubMed
24.
go back to reference Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309CrossRefPubMedPubMedCentral Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309CrossRefPubMedPubMedCentral
25.
go back to reference Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée JM, Ballet S, Corot C (2015) T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats. Investig Radiol 50:473–480CrossRef Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idée JM, Ballet S, Corot C (2015) T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats. Investig Radiol 50:473–480CrossRef
26.
go back to reference Lohrke J, Frisk A-L, Frenzel T, Schöckel L, Rosenbruch M, Jost G, Lenhard DC, Sieber MA, Nischwitz V, Küppers A, Pietsch H (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Investig Radiol 52:324–333CrossRef Lohrke J, Frisk A-L, Frenzel T, Schöckel L, Rosenbruch M, Jost G, Lenhard DC, Sieber MA, Nischwitz V, Küppers A, Pietsch H (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Investig Radiol 52:324–333CrossRef
27.
go back to reference Yoo R-E, Sohn C-H, Kang KM, Yun TJ, Choi SH, Kim JH, Park SW (2018) Evaluation of gadolinium retention after serial administrations of a macrocyclic gadolinium-based contrast agent (gadobutrol). Investig Radiol 53:20–25CrossRef Yoo R-E, Sohn C-H, Kang KM, Yun TJ, Choi SH, Kim JH, Park SW (2018) Evaluation of gadolinium retention after serial administrations of a macrocyclic gadolinium-based contrast agent (gadobutrol). Investig Radiol 53:20–25CrossRef
28.
go back to reference Morita N, Wang S, Chawla S, Poptani H, Melhem ER (2010) Dynamic susceptibility contrast perfusion weighted imaging in grading of nonenhancing astrocytomas. J Magn Reson Imaging 32:803–808CrossRefPubMed Morita N, Wang S, Chawla S, Poptani H, Melhem ER (2010) Dynamic susceptibility contrast perfusion weighted imaging in grading of nonenhancing astrocytomas. J Magn Reson Imaging 32:803–808CrossRefPubMed
29.
go back to reference Fan GG, Deng QL, Wu ZH, Guo QY (2006) Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br J Radiol 79:652–658CrossRefPubMed Fan GG, Deng QL, Wu ZH, Guo QY (2006) Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br J Radiol 79:652–658CrossRefPubMed
30.
go back to reference Batra A, Tripathi RP, Singh AK (2004) Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol 48:324–332CrossRefPubMed Batra A, Tripathi RP, Singh AK (2004) Perfusion magnetic resonance imaging and magnetic resonance spectroscopy of cerebral gliomas showing imperceptible contrast enhancement on conventional magnetic resonance imaging. Australas Radiol 48:324–332CrossRefPubMed
Metadata
Title
Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast enhancement and linear/macrocyclic agents
Authors
Aida Kiviniemi
Maria Gardberg
Paul Ek
Janek Frantzén
Johan Bobacka
Heikki Minn
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 5/2019
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-019-02172-6

Other articles of this Issue 5/2019

Neuroradiology 5/2019 Go to the issue