Skip to main content
Top
Published in: Neuroradiology 11/2015

01-11-2015 | Functional Neuroradiology

Iron deposition influences the measurement of water diffusion tensor in the human brain: a combined analysis of diffusion and iron-induced phase changes

Authors: Xiaojun Xu, Qidong Wang, Jianhui Zhong, Minming Zhang

Published in: Neuroradiology | Issue 11/2015

Login to get access

Abstract

Introduction

This study aims to evaluate the impact of iron deposition during aging on the measurement of water diffusion in the brain.

Methods

Diffusion tensor images (DTI) and phase images collected from a group of healthy adults from 23 to 72 years old were retrospectively analyzed. The axial diffusivity, radial diffusivity, mean diffusivity (MD), and fractional anisotropy (FA) in the frontal white matter and deep gray matter nuclei were calculated. The phase changes in these regions were used to estimate local iron concentration. Pearson correlation analysis was used to evaluate the age dependence of DTI metrics and iron concentration. Multiple linear regression models were then built to examine the independent effect of age and iron deposition on DTI metrics.

Results

Age-related iron deposition occurred in the putamen (r = 0.680, P < 0.001) and frontal white matter (r = 0.333, P = 0.007). In the putamen, FA increased with elevated iron concentration (P = 0.042) excluding the effect of age, and MD decreased with iron deposition with marginal statistical significance (P = 0.067). In the frontal white matter, increase in iron level was also associated with a decrease in MD and an increase in FA. Moreover, radial diffusivity was more reduced than axial diffusivity as local iron concentration increased.

Conclusion

Iron deposition in the brain during aging decreases water diffusion and increases the degree of anisotropy. Caution is needed when using DTI metrics for diagnosis of various neurological diseases involving abnormal iron deposition.
Literature
1.
go back to reference Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMed Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546CrossRefPubMed
2.
go back to reference Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350CrossRefPubMed Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350CrossRefPubMed
3.
go back to reference Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761CrossRefPubMed Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761CrossRefPubMed
4.
go back to reference Sullivan EV, Pfefferbaum A (2007) Neuroradiological characterization of normal adult ageing. Br J Radiol 80:S99–S108CrossRefPubMed Sullivan EV, Pfefferbaum A (2007) Neuroradiological characterization of normal adult ageing. Br J Radiol 80:S99–S108CrossRefPubMed
5.
go back to reference Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 15(26):132–140CrossRef Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 15(26):132–140CrossRef
6.
go back to reference Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227CrossRefPubMed Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227CrossRefPubMed
7.
go back to reference Furutani K, Harada M, Minato M, Morita N, Nishitani H (2005) Regional changes of fractional anisotropy with normal aging using statistical parametric mapping (SPM). J Med Investig 52:186–190CrossRef Furutani K, Harada M, Minato M, Morita N, Nishitani H (2005) Regional changes of fractional anisotropy with normal aging using statistical parametric mapping (SPM). J Med Investig 52:186–190CrossRef
8.
go back to reference Zhang YT, Zhang CY, Zhang J, Li W (2005) Age related changes of normal adult brain structure: analyzed with diffusion tensor imaging. Chin Med J 118:1059–1065PubMed Zhang YT, Zhang CY, Zhang J, Li W (2005) Age related changes of normal adult brain structure: analyzed with diffusion tensor imaging. Chin Med J 118:1059–1065PubMed
9.
go back to reference Abe O, Yamasue H, Aoki S et al (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116CrossRefPubMed Abe O, Yamasue H, Aoki S et al (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116CrossRefPubMed
10.
go back to reference Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31:482–493PubMedCentralCrossRefPubMed Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31:482–493PubMedCentralCrossRefPubMed
11.
go back to reference Pal D, Trivedi R, Saksena S et al (2011) Quantification of age and gender related changes in diffusion tensor imaging indices in deep grey matter of the normal human brain. J Clin Neurosci 18:193–196CrossRefPubMed Pal D, Trivedi R, Saksena S et al (2011) Quantification of age and gender related changes in diffusion tensor imaging indices in deep grey matter of the normal human brain. J Clin Neurosci 18:193–196CrossRefPubMed
12.
go back to reference Wang Q, Xu X, Zhang M (2010) Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol 31:516–520CrossRefPubMed Wang Q, Xu X, Zhang M (2010) Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol 31:516–520CrossRefPubMed
13.
go back to reference Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed
14.
go back to reference Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3:265–301CrossRefPubMed Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3:265–301CrossRefPubMed
15.
go back to reference Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40:35–42CrossRefPubMed Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40:35–42CrossRefPubMed
16.
go back to reference Awasthi R, Gupta RK, Trivedi R, Singh JK, Paliwal VK, Rathore RK (2010) Diffusion tensor MR imaging in children with pantothenate kinase associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol 31:442–447CrossRefPubMed Awasthi R, Gupta RK, Trivedi R, Singh JK, Paliwal VK, Rathore RK (2010) Diffusion tensor MR imaging in children with pantothenate kinase associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol 31:442–447CrossRefPubMed
17.
go back to reference Ling HW, Ding B, Wang H, Zhang H, Chen KM (2011) Could iron accumulation be a etiology of the white matter change in Alzheimer’s disease: using phase imaging to detect white matter iron deposition based on diffusion tensor imaging. Dement Geriatr Cogn Disord 31:300–308CrossRefPubMed Ling HW, Ding B, Wang H, Zhang H, Chen KM (2011) Could iron accumulation be a etiology of the white matter change in Alzheimer’s disease: using phase imaging to detect white matter iron deposition based on diffusion tensor imaging. Dement Geriatr Cogn Disord 31:300–308CrossRefPubMed
18.
go back to reference Haacke EM, Muhammad A, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264CrossRefPubMed Haacke EM, Muhammad A, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264CrossRefPubMed
19.
go back to reference Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147:103–110CrossRefPubMed Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147:103–110CrossRefPubMed
20.
go back to reference Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25CrossRefPubMed Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25CrossRefPubMed
21.
go back to reference Hong X, Dixon TW (1992) Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J Magn Reson 99:561–570 Hong X, Dixon TW (1992) Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J Magn Reson 99:561–570
22.
go back to reference Zhong J, Gore JC (1991) Studies of restricted diffusion in heterogeneous media containing variations in susceptibility. Magn Reson Med 19:276–284CrossRefPubMed Zhong J, Gore JC (1991) Studies of restricted diffusion in heterogeneous media containing variations in susceptibility. Magn Reson Med 19:276–284CrossRefPubMed
23.
go back to reference Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurement of diffusion. J Magn Reson 95:267–280 Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurement of diffusion. J Magn Reson 95:267–280
24.
go back to reference Dose MD, Zhong J, Gore JC (1999) In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 41:236–240CrossRef Dose MD, Zhong J, Gore JC (1999) In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 41:236–240CrossRef
25.
go back to reference Trudeau JD, Thomas DW, Hawkins J (1995) The effect of inhomogenerous sample susceptibility on measured diffusion anisotropy using NMR imaging. J Magn Reson B 108:22–30CrossRefPubMed Trudeau JD, Thomas DW, Hawkins J (1995) The effect of inhomogenerous sample susceptibility on measured diffusion anisotropy using NMR imaging. J Magn Reson B 108:22–30CrossRefPubMed
26.
go back to reference Beaulieu C, Allen PS (1996) An in vitro evaluation of the effects of local magnetic susceptibility induced gradients on anisotropic water diffusion in nerve. Magn Reson Med 36:39–44CrossRefPubMed Beaulieu C, Allen PS (1996) An in vitro evaluation of the effects of local magnetic susceptibility induced gradients on anisotropic water diffusion in nerve. Magn Reson Med 36:39–44CrossRefPubMed
27.
go back to reference Clark CA, Barker GJ, Tofts PS (1999) An in vivo evaluation of the effects of local magnetic susceptibility-induced gradients on water diffusion measurements in human brain. J Magn Reson 141:52–61CrossRefPubMed Clark CA, Barker GJ, Tofts PS (1999) An in vivo evaluation of the effects of local magnetic susceptibility-induced gradients on water diffusion measurements in human brain. J Magn Reson 141:52–61CrossRefPubMed
29.
go back to reference Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. NeuroImage 59:2088–2097PubMedCentralCrossRefPubMed Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. NeuroImage 59:2088–2097PubMedCentralCrossRefPubMed
30.
go back to reference Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMed Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMed
31.
go back to reference Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46:1174–1188CrossRefPubMed Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46:1174–1188CrossRefPubMed
32.
go back to reference Haris M, Gupta RK, Husain N, Hasan KM, Husain M, Narayana PA (2006) Measurement of DTI metrics in hemorrhagic brain lesions: possible implication in MRI interpretation. J Magn Reson Imaging 24:1259–1268CrossRefPubMed Haris M, Gupta RK, Husain N, Hasan KM, Husain M, Narayana PA (2006) Measurement of DTI metrics in hemorrhagic brain lesions: possible implication in MRI interpretation. J Magn Reson Imaging 24:1259–1268CrossRefPubMed
33.
go back to reference Zecca L, Youdim MB, Riederer P, Cornor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873CrossRefPubMed Zecca L, Youdim MB, Riederer P, Cornor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873CrossRefPubMed
34.
go back to reference Yoshikawa K, Nakata Y, Yamada K, Nakagawa M (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 75:481–484PubMedCentralCrossRefPubMed Yoshikawa K, Nakata Y, Yamada K, Nakagawa M (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 75:481–484PubMedCentralCrossRefPubMed
35.
go back to reference Boska MD, Hasan KM, Kibuule D et al (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26:590–596PubMedCentralCrossRefPubMed Boska MD, Hasan KM, Kibuule D et al (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26:590–596PubMedCentralCrossRefPubMed
36.
go back to reference Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384PubMedCentralCrossRefPubMed Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384PubMedCentralCrossRefPubMed
37.
go back to reference Kantarci K, Avula R, Senjem ML et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74:1814–1821PubMedCentralCrossRefPubMed Kantarci K, Avula R, Senjem ML et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74:1814–1821PubMedCentralCrossRefPubMed
38.
go back to reference Rossi C, Boss A, Martirosian P et al (2008) Influence of steady background gradients on the accuracy of molecular diffusion anisotropy measurements. Magn Reson Imaging 26:1250–1258CrossRefPubMed Rossi C, Boss A, Martirosian P et al (2008) Influence of steady background gradients on the accuracy of molecular diffusion anisotropy measurements. Magn Reson Imaging 26:1250–1258CrossRefPubMed
39.
go back to reference Zhu WZ, Zhong WD, Wang W et al (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253:497–504CrossRefPubMed Zhu WZ, Zhong WD, Wang W et al (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253:497–504CrossRefPubMed
40.
go back to reference Zhang J, Zhang Y, Wang J et al (2010) Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res 1330:124–130CrossRefPubMed Zhang J, Zhang Y, Wang J et al (2010) Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res 1330:124–130CrossRefPubMed
41.
go back to reference Jin L, Wang J, Zhao L et al (2011) Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain 134:50–58CrossRefPubMed Jin L, Wang J, Zhao L et al (2011) Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain 134:50–58CrossRefPubMed
42.
go back to reference Zivadinov R, Heininen-Brown M, Schirda CV et al (2012) Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study. Neuroimage 59:331–339CrossRefPubMed Zivadinov R, Heininen-Brown M, Schirda CV et al (2012) Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study. Neuroimage 59:331–339CrossRefPubMed
43.
go back to reference Liu C, Li W, Tong KA et al (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41PubMedCentralCrossRefPubMed Liu C, Li W, Tong KA et al (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41PubMedCentralCrossRefPubMed
Metadata
Title
Iron deposition influences the measurement of water diffusion tensor in the human brain: a combined analysis of diffusion and iron-induced phase changes
Authors
Xiaojun Xu
Qidong Wang
Jianhui Zhong
Minming Zhang
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 11/2015
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-015-1579-4

Other articles of this Issue 11/2015

Neuroradiology 11/2015 Go to the issue