Skip to main content
Top
Published in: Calcified Tissue International 3/2019

01-09-2019 | Osteoporosis | Review

The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics

Authors: Luc Rochette, Alexandre Meloux, Eve Rigal, Marianne Zeller, Gabriel Malka, Yves Cottin, Catherine Vergely

Published in: Calcified Tissue International | Issue 3/2019

Login to get access

Abstract

Osteoporosis (OP) and cardiovascular diseases (CVD) are both important causes of mortality and morbidity in aging patients. There are common mechanisms underlying the regulation of bone remodeling and the development of smooth muscle calcification; a temporal relationship exists between osteoporosis and the imbalance of mineral metabolism in the vessels. Vascular calcification appears regulated by mechanisms that include both inductive and inhibitory processes. Multiple factors are implicated in both bone and vascular metabolism. Among these factors, the superfamily of tumor necrosis factor (TNF) receptors including osteoprotegerin (OPG) and its ligands has been established. OPG is a soluble decoy receptor for receptor activator of nuclear factor-kB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). OPG binds to RANKL and TRAIL, and inhibits the association with their receptors, which have been labeled as the receptor activator of NF-kB (RANK). Sustained release of OPG from vascular endothelial cells (ECs) has been demonstrated in response to inflammatory proteins and cytokines, suggesting that OPG/RANKL/RANK system plays a modulatory role in vascular injury and inflammation. For the development of potential therapeutic strategies targeting vascular calcification, critical consideration of the implications for bone metabolism must be taken into account to prevent potentially detrimental effects to bone metabolism.
Literature
3.
go back to reference Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C (2018) The role of osteoprotegerin in the crosstalk between vessels and bone: its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 182:115–132CrossRefPubMed Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C (2018) The role of osteoprotegerin in the crosstalk between vessels and bone: its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 182:115–132CrossRefPubMed
4.
go back to reference Barbu CG, Arsene AL, Florea S, Albu A, Sirbu A, Martin S, Nicolae AC, Burcea-Dragomiroiu GTA, Popa DE, Velescu BS, Dumitrescu IB, Mitrea N, Draganescu D, Lupuliasa D, Spandidos DA, Tsatsakis AM, Dragoi CM, Fica S (2017) Cardiovascular risk assessment in osteoporotic patients using osteoprotegerin as a reliable predictive biochemical marker. Mol Med Rep 16:6059–6067CrossRefPubMedPubMedCentral Barbu CG, Arsene AL, Florea S, Albu A, Sirbu A, Martin S, Nicolae AC, Burcea-Dragomiroiu GTA, Popa DE, Velescu BS, Dumitrescu IB, Mitrea N, Draganescu D, Lupuliasa D, Spandidos DA, Tsatsakis AM, Dragoi CM, Fica S (2017) Cardiovascular risk assessment in osteoporotic patients using osteoprotegerin as a reliable predictive biochemical marker. Mol Med Rep 16:6059–6067CrossRefPubMedPubMedCentral
6.
go back to reference Chung CP, Solus JF, Oeser A, Li C, Raggi P, Smith JR, Stein CM (2015) A variant in the osteoprotegerin gene is associated with coronary atherosclerosis in patients with rheumatoid arthritis: results from a candidate gene study. Int J Mol Sci 16:3885–3894CrossRefPubMedPubMedCentral Chung CP, Solus JF, Oeser A, Li C, Raggi P, Smith JR, Stein CM (2015) A variant in the osteoprotegerin gene is associated with coronary atherosclerosis in patients with rheumatoid arthritis: results from a candidate gene study. Int J Mol Sci 16:3885–3894CrossRefPubMedPubMedCentral
8.
go back to reference Martin-Ventura JL, Munoz-Garcia B, Egido J, Blanco-Colio LM (2007) Trail and vascular injury. Front Biosci 12:3656–3667CrossRefPubMed Martin-Ventura JL, Munoz-Garcia B, Egido J, Blanco-Colio LM (2007) Trail and vascular injury. Front Biosci 12:3656–3667CrossRefPubMed
9.
go back to reference Harper E, Forde H, Davenport C, Rochfort KD, Smith D, Cummins PM (2016) Vascular calcification in type-2 diabetes and cardiovascular disease: integrative roles for OPG, RANKL and TRAIL. Vasc Pharmacol 82:30–40CrossRef Harper E, Forde H, Davenport C, Rochfort KD, Smith D, Cummins PM (2016) Vascular calcification in type-2 diabetes and cardiovascular disease: integrative roles for OPG, RANKL and TRAIL. Vasc Pharmacol 82:30–40CrossRef
10.
go back to reference Ikeda T, Kasai M, Utsuyama M, Hirokawa K (2001) Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426CrossRefPubMed Ikeda T, Kasai M, Utsuyama M, Hirokawa K (2001) Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426CrossRefPubMed
11.
go back to reference Forde H, Harper E, Davenport C, Rochfort KD, Wallace R, Murphy RP, Smith D, Cummins PM (2016) The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: a review of the evidence. Atherosclerosis 247:87–96CrossRefPubMed Forde H, Harper E, Davenport C, Rochfort KD, Wallace R, Murphy RP, Smith D, Cummins PM (2016) The beneficial pleiotropic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) within the vasculature: a review of the evidence. Atherosclerosis 247:87–96CrossRefPubMed
12.
go back to reference D’Auria F, Centurione L, Centurione MA, Angelini A, Di Pietro R (2015) Tumor necrosis factor related apoptosis inducing ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries. J Cell Biochem 116:2427–2434CrossRefPubMed D’Auria F, Centurione L, Centurione MA, Angelini A, Di Pietro R (2015) Tumor necrosis factor related apoptosis inducing ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries. J Cell Biochem 116:2427–2434CrossRefPubMed
13.
go back to reference Cunha DA, Cito M, Carlsson PO, Vanderwinden JM, Molkentin JD, Bugliani M, Marchetti P, Eizirik DL, Cnop M (2016) Thrombospondin 1 protects pancreatic beta-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ 23:1995–2006CrossRefPubMedPubMedCentral Cunha DA, Cito M, Carlsson PO, Vanderwinden JM, Molkentin JD, Bugliani M, Marchetti P, Eizirik DL, Cnop M (2016) Thrombospondin 1 protects pancreatic beta-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ 23:1995–2006CrossRefPubMedPubMedCentral
14.
go back to reference Milanova V, Ivanovska N, Dimitrova P (2014) TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014:643406CrossRefPubMedPubMedCentral Milanova V, Ivanovska N, Dimitrova P (2014) TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm 2014:643406CrossRefPubMedPubMedCentral
15.
go back to reference Kim JY, Park YJ, Kim KJ, Choi JJ, Kim WU, Cho CS (2013) Osteoprotegerin causes apoptosis of endothelial progenitor cells by induction of oxidative stress. Arthritis Rheum 65:2172–2182CrossRefPubMed Kim JY, Park YJ, Kim KJ, Choi JJ, Kim WU, Cho CS (2013) Osteoprotegerin causes apoptosis of endothelial progenitor cells by induction of oxidative stress. Arthritis Rheum 65:2172–2182CrossRefPubMed
16.
go back to reference Lee J, Lee S, Lee CY, Seo HH, Shin S, Choi JW, Kim SW, Park JC, Lim S, Hwang KC (2017) Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 8:195CrossRefPubMedPubMedCentral Lee J, Lee S, Lee CY, Seo HH, Shin S, Choi JW, Kim SW, Park JC, Lim S, Hwang KC (2017) Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 8:195CrossRefPubMedPubMedCentral
18.
go back to reference Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C (2013) Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 140:239–257CrossRefPubMed Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C (2013) Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharmacol Ther 140:239–257CrossRefPubMed
19.
go back to reference Culic O, Gruwel ML, Schrader J (1997) Energy turnover of vascular endothelial cells. Am J Physiol 273:C205–C213CrossRefPubMed Culic O, Gruwel ML, Schrader J (1997) Energy turnover of vascular endothelial cells. Am J Physiol 273:C205–C213CrossRefPubMed
20.
go back to reference Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, Heggermont W, Godde L, Vinckier S, Van Veldhoven PP, Eelen G, Schoonjans L, Gerhardt H, Dewerchin M, Baes M, De Bock K, Ghesquiere B, Lunt SY, Fendt SM, Carmeliet P (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:192–197CrossRefPubMedPubMedCentral Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, Heggermont W, Godde L, Vinckier S, Van Veldhoven PP, Eelen G, Schoonjans L, Gerhardt H, Dewerchin M, Baes M, De Bock K, Ghesquiere B, Lunt SY, Fendt SM, Carmeliet P (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:192–197CrossRefPubMedPubMedCentral
21.
go back to reference Iso T, Maeda K, Hanaoka H, Suga T, Goto K, Syamsunarno MR, Hishiki T, Nagahata Y, Matsui H, Arai M, Yamaguchi A, Abumrad NA, Sano M, Suematsu M, Endo K, Hotamisligil GS, Kurabayashi M (2013) Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 33:2549–2557CrossRefPubMedPubMedCentral Iso T, Maeda K, Hanaoka H, Suga T, Goto K, Syamsunarno MR, Hishiki T, Nagahata Y, Matsui H, Arai M, Yamaguchi A, Abumrad NA, Sano M, Suematsu M, Endo K, Hotamisligil GS, Kurabayashi M (2013) Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 33:2549–2557CrossRefPubMedPubMedCentral
22.
go back to reference Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921CrossRefPubMed Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921CrossRefPubMed
23.
24.
go back to reference Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448CrossRefPubMed Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448CrossRefPubMed
25.
go back to reference Kobayashi-Sakamoto M, Hirose K, Isogai E, Chiba I (2004) NF-kappaB-dependent induction of osteoprotegerin by Porphyromonas gingivalis in endothelial cells. Biochem Biophys Res Commun 315:107–112CrossRefPubMed Kobayashi-Sakamoto M, Hirose K, Isogai E, Chiba I (2004) NF-kappaB-dependent induction of osteoprotegerin by Porphyromonas gingivalis in endothelial cells. Biochem Biophys Res Commun 315:107–112CrossRefPubMed
26.
go back to reference Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I (2008) Role of alphav integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76:139–144CrossRefPubMed Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I (2008) Role of alphav integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76:139–144CrossRefPubMed
27.
go back to reference Lommi JI, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Kupari M, Helske S (2011) High-density lipoproteins (HDL) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification. Atherosclerosis 219:538–544CrossRefPubMed Lommi JI, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Kupari M, Helske S (2011) High-density lipoproteins (HDL) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification. Atherosclerosis 219:538–544CrossRefPubMed
28.
go back to reference Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840:2709–2729CrossRefPubMed Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840:2709–2729CrossRefPubMed
29.
go back to reference Zhang J, Fu M, Myles D, Zhu X, Du J, Cao X, Chen YE (2002) PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways. FEBS Lett 521:180–184CrossRefPubMed Zhang J, Fu M, Myles D, Zhu X, Du J, Cao X, Chen YE (2002) PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways. FEBS Lett 521:180–184CrossRefPubMed
30.
go back to reference Kleemann R, Bureeva S, Perlina A, Kaput J, Verschuren L, Wielinga PY, Hurt-Camejo E, Nikolsky Y, van Ommen B, Kooistra T (2011) A systems biology strategy for predicting similarities and differences of drug effects: evidence for drug-specific modulation of inflammation in atherosclerosis. BMC Syst Biol 5:125CrossRefPubMedPubMedCentral Kleemann R, Bureeva S, Perlina A, Kaput J, Verschuren L, Wielinga PY, Hurt-Camejo E, Nikolsky Y, van Ommen B, Kooistra T (2011) A systems biology strategy for predicting similarities and differences of drug effects: evidence for drug-specific modulation of inflammation in atherosclerosis. BMC Syst Biol 5:125CrossRefPubMedPubMedCentral
31.
go back to reference Stangl K, Stangl V (2010) The ubiquitin-proteasome pathway and endothelial (dys)function. Cardiovasc Res 85:281–290CrossRefPubMed Stangl K, Stangl V (2010) The ubiquitin-proteasome pathway and endothelial (dys)function. Cardiovasc Res 85:281–290CrossRefPubMed
32.
go back to reference Laina A, Stellos K, Stamatelopoulos K (2017) Vascular ageing: Underlying mechanisms and clinical implications. Exp Gerontol 109:16–30CrossRefPubMed Laina A, Stellos K, Stamatelopoulos K (2017) Vascular ageing: Underlying mechanisms and clinical implications. Exp Gerontol 109:16–30CrossRefPubMed
33.
go back to reference Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828CrossRefPubMed Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828CrossRefPubMed
34.
go back to reference Ueland T, Yndestad A, Oie E, Florholmen G, Halvorsen B, Froland SS, Simonsen S, Christensen G, Gullestad L, Aukrust P (2005) Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 111:2461–2468CrossRefPubMed Ueland T, Yndestad A, Oie E, Florholmen G, Halvorsen B, Froland SS, Simonsen S, Christensen G, Gullestad L, Aukrust P (2005) Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 111:2461–2468CrossRefPubMed
35.
go back to reference di Giuseppe R, Biemann R, Wirth J, Menzel J, Isermann B, Stangl GI, Fritsche A, Boeing H, Schulze MB, Weikert C (2017) Plasma osteoprotegerin, its correlates, and risk of heart failure: a prospective cohort study. Eur J Epidemiol 32:113–123CrossRefPubMed di Giuseppe R, Biemann R, Wirth J, Menzel J, Isermann B, Stangl GI, Fritsche A, Boeing H, Schulze MB, Weikert C (2017) Plasma osteoprotegerin, its correlates, and risk of heart failure: a prospective cohort study. Eur J Epidemiol 32:113–123CrossRefPubMed
36.
go back to reference Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, Lee SY, Kong YY, Kwon YG (2003) Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem 278:39548–39557CrossRefPubMed Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, Lee SY, Kong YY, Kwon YG (2003) Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem 278:39548–39557CrossRefPubMed
37.
go back to reference Potente M, Carmeliet P (2017) The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79:43–66CrossRefPubMed Potente M, Carmeliet P (2017) The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79:43–66CrossRefPubMed
38.
go back to reference Kobayashi-Sakamoto M, Isogai E, Holen I (2010) Osteoprotegerin induces cytoskeletal reorganization and activates FAK, Src, and ERK signaling in endothelial cells. Eur J Haematol 85:26–35PubMed Kobayashi-Sakamoto M, Isogai E, Holen I (2010) Osteoprotegerin induces cytoskeletal reorganization and activates FAK, Src, and ERK signaling in endothelial cells. Eur J Haematol 85:26–35PubMed
39.
go back to reference Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18:326–335CrossRefPubMed Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18:326–335CrossRefPubMed
40.
go back to reference Hwang HJ, Jung SH, Lee HC, Han NK, Bae IH, Lee M, Han YH, Kang YS, Lee SJ, Park HJ, Ko YG, Lee JS (2016) Identification of novel therapeutic targets in the secretome of ionizing radiation induced senescent tumor cells. Oncol Rep 35:841–850CrossRefPubMed Hwang HJ, Jung SH, Lee HC, Han NK, Bae IH, Lee M, Han YH, Kang YS, Lee SJ, Park HJ, Ko YG, Lee JS (2016) Identification of novel therapeutic targets in the secretome of ionizing radiation induced senescent tumor cells. Oncol Rep 35:841–850CrossRefPubMed
41.
go back to reference Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634CrossRefPubMedPubMedCentral Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634CrossRefPubMedPubMedCentral
42.
go back to reference Rochette L, Zeller M, Cottin Y, Vergely C (2015) Growth and differentiation factor 11 (GDF11): functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 156:26–33CrossRefPubMed Rochette L, Zeller M, Cottin Y, Vergely C (2015) Growth and differentiation factor 11 (GDF11): functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 156:26–33CrossRefPubMed
43.
go back to reference Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, Sun N, Duan X, Jing W, Liang X, Zhao H, Ye L, Chen Q, Yuan Q (2016) GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun 7:12794CrossRefPubMedPubMedCentral Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, Sun N, Duan X, Jing W, Liang X, Zhao H, Ye L, Chen Q, Yuan Q (2016) GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun 7:12794CrossRefPubMedPubMedCentral
44.
go back to reference Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C, Xu L, Chen H, Wang J, Li D, Siwko S, Penninger JM, Ning G, Xiao J, Liu M (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546CrossRefPubMed Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C, Xu L, Chen H, Wang J, Li D, Siwko S, Penninger JM, Ning G, Xiao J, Liu M (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546CrossRefPubMed
45.
go back to reference Weitzmann MN, Ofotokun I (2016) Physiological and pathophysiological bone turnover—role of the immune system. Nat Rev 12:518–532 Weitzmann MN, Ofotokun I (2016) Physiological and pathophysiological bone turnover—role of the immune system. Nat Rev 12:518–532
46.
go back to reference Goltzman D, Mannstadt M, Marcocci C (2018) Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res 50:1–13CrossRefPubMed Goltzman D, Mannstadt M, Marcocci C (2018) Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res 50:1–13CrossRefPubMed
47.
go back to reference Akbari S, Rasouli-Ghahroudi AA (2018) Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. Biomed Res Int 2018:4629383CrossRefPubMedPubMedCentral Akbari S, Rasouli-Ghahroudi AA (2018) Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. Biomed Res Int 2018:4629383CrossRefPubMedPubMedCentral
49.
go back to reference Roumeliotis S, Dounousi E, Eleftheriadis T, Liakopoulos V (2019) Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: a review. Int J Mol Scie 20:628CrossRef Roumeliotis S, Dounousi E, Eleftheriadis T, Liakopoulos V (2019) Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: a review. Int J Mol Scie 20:628CrossRef
50.
go back to reference Lok ZSY, Lyle AN (2019) Osteopontin in Vascular Disease. Arterioscler Thromb Vasc Biol:ATVBAHA118311577 Lok ZSY, Lyle AN (2019) Osteopontin in Vascular Disease. Arterioscler Thromb Vasc Biol:ATVBAHA118311577
51.
go back to reference Back M, Aranyi T, Cancela ML, Carracedo M, Conceicao N, Leftheriotis G, Macrae V, Martin L, Nitschke Y, Pasch A, Quaglino D, Rutsch F, Shanahan C, Sorribas V, Szeri F, Valdivielso P, Vanakker O, Kempf H (2018) Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front Cardiovasc Med 5:196CrossRefPubMed Back M, Aranyi T, Cancela ML, Carracedo M, Conceicao N, Leftheriotis G, Macrae V, Martin L, Nitschke Y, Pasch A, Quaglino D, Rutsch F, Shanahan C, Sorribas V, Szeri F, Valdivielso P, Vanakker O, Kempf H (2018) Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front Cardiovasc Med 5:196CrossRefPubMed
52.
go back to reference Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC (2015) Vascular calcification and stone disease: a new look towards the mechanism. J Cardiovasc Dev Dis 2:141–164CrossRefPubMedPubMedCentral Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC (2015) Vascular calcification and stone disease: a new look towards the mechanism. J Cardiovasc Dev Dis 2:141–164CrossRefPubMedPubMedCentral
53.
go back to reference Davaine JM, Quillard T, Brion R, Laperine O, Guyomarch B, Merlini T, Chatelais M, Guilbaud F, Brennan MA, Charrier C, Heymann D, Goueffic Y, Heymann MF (2014) Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS ONE 9:e107642CrossRefPubMedPubMedCentral Davaine JM, Quillard T, Brion R, Laperine O, Guyomarch B, Merlini T, Chatelais M, Guilbaud F, Brennan MA, Charrier C, Heymann D, Goueffic Y, Heymann MF (2014) Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS ONE 9:e107642CrossRefPubMedPubMedCentral
54.
55.
go back to reference Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS, Altemeier WA (2017) Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol 312:L556–L567 Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS, Altemeier WA (2017) Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol 312:L556–L567
56.
57.
go back to reference Schneeweis LA, Willard D, Milla ME (2005) Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-kappaB ligand. J Biol Chem 280:41155–41164CrossRefPubMed Schneeweis LA, Willard D, Milla ME (2005) Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-kappaB ligand. J Biol Chem 280:41155–41164CrossRefPubMed
58.
go back to reference Garcia-Sanchez C, Posadas-Romero C, Posadas-Sanchez R, Carreon-Torres E, Rodriguez-Perez JM, Juarez-Rojas JG, Martinez-Sanchez C, Fragoso JM, Gonzalez-Pacheco H, Vargas-Alarcon G, Perez-Mendez O (2015) Low concentrations of phospholipids and plasma HDL cholesterol subclasses in asymptomatic subjects with high coronary calcium scores. Atherosclerosis 238:250–255CrossRefPubMed Garcia-Sanchez C, Posadas-Romero C, Posadas-Sanchez R, Carreon-Torres E, Rodriguez-Perez JM, Juarez-Rojas JG, Martinez-Sanchez C, Fragoso JM, Gonzalez-Pacheco H, Vargas-Alarcon G, Perez-Mendez O (2015) Low concentrations of phospholipids and plasma HDL cholesterol subclasses in asymptomatic subjects with high coronary calcium scores. Atherosclerosis 238:250–255CrossRefPubMed
59.
go back to reference Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259CrossRefPubMed Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259CrossRefPubMed
60.
go back to reference Tziakas DN, Chalikias G, Pavlaki M, Kareli D, Gogiraju R, Hubert A, Bohm E, Stamoulis P, Drosos I, Kikas P, Mikroulis D, Giatromanolaki A, Georgiadis GS, Konstantinou F, Argyriou C, Munzel T, Konstantinides SV, Schafer K (2019) Lysed erythrocyte membranes promote vascular calcification: possible role of erythrocyte-derived nitric oxide. Circulation 139:2032–2048CrossRefPubMed Tziakas DN, Chalikias G, Pavlaki M, Kareli D, Gogiraju R, Hubert A, Bohm E, Stamoulis P, Drosos I, Kikas P, Mikroulis D, Giatromanolaki A, Georgiadis GS, Konstantinou F, Argyriou C, Munzel T, Konstantinides SV, Schafer K (2019) Lysed erythrocyte membranes promote vascular calcification: possible role of erythrocyte-derived nitric oxide. Circulation 139:2032–2048CrossRefPubMed
61.
go back to reference Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N (2017) Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 281:471–482CrossRefPubMed Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, Di Daniele N (2017) Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 281:471–482CrossRefPubMed
62.
go back to reference Saliques S, Teyssier JR, Vergely C, Lorgis L, Lorin J, Donzel A, Sicard P, Berchoud J, Ragot S, Touzery C, Cottin Y, Rochette L, Zeller M (2011) Smoking and FOS expression from blood leukocyte transcripts in patients with coronary artery disease. Atherosclerosis 219:931–936CrossRefPubMed Saliques S, Teyssier JR, Vergely C, Lorgis L, Lorin J, Donzel A, Sicard P, Berchoud J, Ragot S, Touzery C, Cottin Y, Rochette L, Zeller M (2011) Smoking and FOS expression from blood leukocyte transcripts in patients with coronary artery disease. Atherosclerosis 219:931–936CrossRefPubMed
63.
go back to reference Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14:16–25CrossRefPubMed Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14:16–25CrossRefPubMed
64.
go back to reference Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935CrossRefPubMedPubMedCentral Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935CrossRefPubMedPubMedCentral
65.
go back to reference Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050CrossRefPubMed Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22:1041–1050CrossRefPubMed
66.
go back to reference Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von Haeseler A, Bader M, Kilic SS, Ueta Y, Pifl C, Narumiya S, Penninger JM (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–509CrossRefPubMed Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von Haeseler A, Bader M, Kilic SS, Ueta Y, Pifl C, Narumiya S, Penninger JM (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–509CrossRefPubMed
67.
go back to reference Shimamura M, Nakagami H, Osako MK, Kurinami H, Koriyama H, Zhengda P, Tomioka H, Tenma A, Wakayama K, Morishita R (2014) OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 111:8191–8196CrossRefPubMedPubMedCentral Shimamura M, Nakagami H, Osako MK, Kurinami H, Koriyama H, Zhengda P, Tomioka H, Tenma A, Wakayama K, Morishita R (2014) OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 111:8191–8196CrossRefPubMedPubMedCentral
68.
go back to reference Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192CrossRefPubMed Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192CrossRefPubMed
69.
go back to reference Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone 100:87–93CrossRefPubMed Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: roles for phosphate, FGF23, and Klotho. Bone 100:87–93CrossRefPubMed
72.
go back to reference Pietrzyk B, Smertka M, Chudek J (2017) Sclerostin: intracellular mechanisms of action and its role in the pathogenesis of skeletal and vascular disorders. Adv Clin Exp Med 26:1283–1291CrossRefPubMed Pietrzyk B, Smertka M, Chudek J (2017) Sclerostin: intracellular mechanisms of action and its role in the pathogenesis of skeletal and vascular disorders. Adv Clin Exp Med 26:1283–1291CrossRefPubMed
73.
go back to reference Alique M, Ramirez-Carracedo R, Bodega G, Carracedo J, Ramirez R (2018) Senescent microvesicles a novel advance in molecular mechanisms of atherosclerotic calcification. Int J Mol Sci 19(7):2003CrossRefPubMedCentral Alique M, Ramirez-Carracedo R, Bodega G, Carracedo J, Ramirez R (2018) Senescent microvesicles a novel advance in molecular mechanisms of atherosclerotic calcification. Int J Mol Sci 19(7):2003CrossRefPubMedCentral
74.
go back to reference Shanahan CM (2013) Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 9:661–670CrossRefPubMed Shanahan CM (2013) Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol 9:661–670CrossRefPubMed
75.
go back to reference Kranenburg G, Bartstra JW, Weijmans M, de Jong PA, Mali WP, Verhaar HJ, Visseren FLJ, Spiering W (2016) Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis 252:106–115CrossRefPubMed Kranenburg G, Bartstra JW, Weijmans M, de Jong PA, Mali WP, Verhaar HJ, Visseren FLJ, Spiering W (2016) Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis 252:106–115CrossRefPubMed
76.
go back to reference Wu MY, Li CJ, Yiang GT, Cheng YL, Tsai AP, Hou YT, Ho YC, Hou MF, Chu PY (2018) Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem 46:1423–1438CrossRefPubMed Wu MY, Li CJ, Yiang GT, Cheng YL, Tsai AP, Hou YT, Ho YC, Hou MF, Chu PY (2018) Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem 46:1423–1438CrossRefPubMed
77.
go back to reference Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X, Haffty BG, Pantel K, Massague J, Kang Y (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714CrossRefPubMedPubMedCentral Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X, Haffty BG, Pantel K, Massague J, Kang Y (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714CrossRefPubMedPubMedCentral
79.
go back to reference Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocana A, Penninger JM, Vasavada RC (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-kappaB ligand pathway. Cell Metab 22:77–85CrossRefPubMedPubMedCentral Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocana A, Penninger JM, Vasavada RC (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-kappaB ligand pathway. Cell Metab 22:77–85CrossRefPubMedPubMedCentral
80.
go back to reference Shirakawa J, Togashi Y, Sakamoto E, Kaji M, Tajima K, Orime K, Inoue H, Kubota N, Kadowaki T, Terauchi Y (2013) Glucokinase activation ameliorates ER stress-induced apoptosis in pancreatic beta-cells. Diabetes 62:3448–3458CrossRefPubMedPubMedCentral Shirakawa J, Togashi Y, Sakamoto E, Kaji M, Tajima K, Orime K, Inoue H, Kubota N, Kadowaki T, Terauchi Y (2013) Glucokinase activation ameliorates ER stress-induced apoptosis in pancreatic beta-cells. Diabetes 62:3448–3458CrossRefPubMedPubMedCentral
81.
go back to reference Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T (2007) Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117:246–257CrossRefPubMedPubMedCentral Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T (2007) Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117:246–257CrossRefPubMedPubMedCentral
82.
go back to reference Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, Coll B, Fernandez E, Valdivielso JM (2009) RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res 104:1041–1048CrossRefPubMed Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, Coll B, Fernandez E, Valdivielso JM (2009) RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res 104:1041–1048CrossRefPubMed
83.
go back to reference de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR (2018) The anti-tumor effect of RANKL inhibition in malignant solid tumors—a systematic review. Cancer Treat Rev 62:18–28CrossRefPubMed de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR (2018) The anti-tumor effect of RANKL inhibition in malignant solid tumors—a systematic review. Cancer Treat Rev 62:18–28CrossRefPubMed
84.
go back to reference Murakami K, Kobayashi Y, Uehara S, Suzuki T, Koide M, Yamashita T, Nakamura M, Takahashi N, Kato H, Udagawa N, Nakamura Y (2017) A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 12:e0181126CrossRefPubMedPubMedCentral Murakami K, Kobayashi Y, Uehara S, Suzuki T, Koide M, Yamashita T, Nakamura M, Takahashi N, Kato H, Udagawa N, Nakamura Y (2017) A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 12:e0181126CrossRefPubMedPubMedCentral
85.
go back to reference Evans BA, Elford C, Pexa A, Francis K, Hughes AC, Deussen A, Ham J (2006) Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res 21:228–236CrossRefPubMed Evans BA, Elford C, Pexa A, Francis K, Hughes AC, Deussen A, Ham J (2006) Human osteoblast precursors produce extracellular adenosine, which modulates their secretion of IL-6 and osteoprotegerin. J Bone Miner Res 21:228–236CrossRefPubMed
86.
go back to reference St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442CrossRefPubMedPubMedCentral St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442CrossRefPubMedPubMedCentral
88.
go back to reference Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millan JL, Bourne LE, Wheeler-Jones CPD, Arnett TR, MacRae VE, Orriss IR (2018) Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: the same functional effect mediated by different cellular mechanisms. J Cell Physiol 233:3230–3243CrossRefPubMed Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millan JL, Bourne LE, Wheeler-Jones CPD, Arnett TR, MacRae VE, Orriss IR (2018) Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: the same functional effect mediated by different cellular mechanisms. J Cell Physiol 233:3230–3243CrossRefPubMed
Metadata
Title
The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics
Authors
Luc Rochette
Alexandre Meloux
Eve Rigal
Marianne Zeller
Gabriel Malka
Yves Cottin
Catherine Vergely
Publication date
01-09-2019
Publisher
Springer US
Published in
Calcified Tissue International / Issue 3/2019
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-019-00573-6

Other articles of this Issue 3/2019

Calcified Tissue International 3/2019 Go to the issue