Skip to main content
Top
Published in: Calcified Tissue International 4/2018

01-04-2018 | Review

Advances in Probiotic Regulation of Bone and Mineral Metabolism

Authors: Laura R. McCabe, Narayanan Parameswaran

Published in: Calcified Tissue International | Issue 4/2018

Login to get access

Abstract

Probiotics have been consumed by humans for thousands of years because they are beneficial for long-term storage of foods and promote the health of their host. Ingested probiotics reside in the gastrointestinal tract where they have many effects including modifying the microbiota composition, intestinal barrier function, and the immune system which result in systemic benefits to the host, including bone health. Probiotics benefit bone growth, density, and structure under conditions of dysbiosis, intestinal permeability, and inflammation (recognized mediators of bone loss and osteoporosis). It is likely that multiple mechanisms are involved in mediating probiotic signals from the gut to the bone. Studies indicate a role for the microbiota (composition and activity), intestinal barrier function, and immune cells in the signaling process. These mechanisms are not mutually exclusive, but rather, may synergize to provide benefits to the skeletal system of the host and serve as a starting point for investigation. Given that probiotics hold great promise for supporting bone health and are generally regarded as safe, future studies identifying mechanisms are warranted.
Literature
1.
go back to reference Gasbarrini G, Bonvicini F, Gramenzi A (2016) Probiotics history. J Clin Gastroenterol 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S116–S119 Gasbarrini G, Bonvicini F, Gramenzi A (2016) Probiotics history. J Clin Gastroenterol 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S116–S119
2.
go back to reference Gogineni V (2013) Probiotics: history and evolution. J Anc Dis Prev Remeidies 1:1–7 Gogineni V (2013) Probiotics: history and evolution. J Anc Dis Prev Remeidies 1:1–7
3.
go back to reference Azizpour K et al (2009) History and basic of probiotics. Res J Biol Sci 4:409–426 Azizpour K et al (2009) History and basic of probiotics. Res J Biol Sci 4:409–426
4.
go back to reference Ozen M, Dinleyici EC (2015) The history of probiotics: the untold story. Benef Microbes 6(2):159–165PubMedCrossRef Ozen M, Dinleyici EC (2015) The history of probiotics: the untold story. Benef Microbes 6(2):159–165PubMedCrossRef
5.
go back to reference Fontana L et al (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109(Suppl 2):S35–S50PubMedCrossRef Fontana L et al (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109(Suppl 2):S35–S50PubMedCrossRef
6.
go back to reference Anukam KC, Reid G (2007) Organisms associated with bacterial vaginosis in Nigerian women as determined by PCR-DGGE and 16S rRNA gene sequence. Afr Health Sci 7(2):68–72PubMedPubMedCentral Anukam KC, Reid G (2007) Organisms associated with bacterial vaginosis in Nigerian women as determined by PCR-DGGE and 16S rRNA gene sequence. Afr Health Sci 7(2):68–72PubMedPubMedCentral
7.
go back to reference Calatayud GA, Suarez JE (2017) A new contribution to the history of probiotics. Benef Microbes 8(2):323–325PubMedCrossRef Calatayud GA, Suarez JE (2017) A new contribution to the history of probiotics. Benef Microbes 8(2):323–325PubMedCrossRef
8.
go back to reference Hill C et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514PubMedCrossRef Hill C et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514PubMedCrossRef
9.
go back to reference McFarland LV (2015) From yaks to yogurt: the history, development, and current use of probiotics. Clin Infect Dis 60(Suppl 2):S85–S90PubMedCrossRef McFarland LV (2015) From yaks to yogurt: the history, development, and current use of probiotics. Clin Infect Dis 60(Suppl 2):S85–S90PubMedCrossRef
10.
12.
go back to reference Hock JM et al (1988) Human parathyroid hormone-(1–34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology 122(6):2899–2904PubMedCrossRef Hock JM et al (1988) Human parathyroid hormone-(1–34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology 122(6):2899–2904PubMedCrossRef
13.
go back to reference Yamada C (2011) [Role of incretins in the regulation of bone metabolism]. Nihon Rinsho 69(5):842–847PubMed Yamada C (2011) [Role of incretins in the regulation of bone metabolism]. Nihon Rinsho 69(5):842–847PubMed
14.
go back to reference Christakos S et al (2017) Intestinal regulation of calcium: vitamin D and bone physiology. Adv Exp Med Biol 1033:3–12PubMedCrossRef Christakos S et al (2017) Intestinal regulation of calcium: vitamin D and bone physiology. Adv Exp Med Biol 1033:3–12PubMedCrossRef
15.
go back to reference Ramsey W, Isales CM (2017) Intestinal incretins and the regulation of bone physiology. Adv Exp Med Biol 1033:13–33PubMedCrossRef Ramsey W, Isales CM (2017) Intestinal incretins and the regulation of bone physiology. Adv Exp Med Biol 1033:13–33PubMedCrossRef
16.
go back to reference Lavoie B, Lian JB, Mawe GM (2017) Regulation of bone metabolism by serotonin. Adv Exp Med Biol 1033:35–46PubMedCrossRef Lavoie B, Lian JB, Mawe GM (2017) Regulation of bone metabolism by serotonin. Adv Exp Med Biol 1033:35–46PubMedCrossRef
18.
go back to reference Parvaneh K et al. (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:897639PubMedPubMedCentralCrossRef Parvaneh K et al. (2015) Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:897639PubMedPubMedCentralCrossRef
19.
20.
go back to reference Collins FL et al (2016) Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS ONE 11(4):e0153180PubMedPubMedCentralCrossRef Collins FL et al (2016) Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS ONE 11(4):e0153180PubMedPubMedCentralCrossRef
21.
go back to reference Zhang J et al (2015) Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology 156(9):3169–3182PubMedPubMedCentralCrossRef Zhang J et al (2015) Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology 156(9):3169–3182PubMedPubMedCentralCrossRef
22.
go back to reference McCabe LR et al (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228(8):1793–1798PubMedPubMedCentralCrossRef McCabe LR et al (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228(8):1793–1798PubMedPubMedCentralCrossRef
23.
go back to reference Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRef Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRef
24.
go back to reference Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan Y-M, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:6275CrossRef Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan Y-M, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:6275CrossRef
25.
go back to reference Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef
26.
go back to reference Steenhout PG, Rochat F, Hager C (2009) The effect of Bifidobacterium lactis on the growth of infants: a pooled analysis of randomized controlled studies. Ann Nutr Metab 55:334–340PubMedCrossRef Steenhout PG, Rochat F, Hager C (2009) The effect of Bifidobacterium lactis on the growth of infants: a pooled analysis of randomized controlled studies. Ann Nutr Metab 55:334–340PubMedCrossRef
27.
go back to reference Lei M, Hua L-M, Wang D-W (2016) The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benef Microbes 7:631–637PubMedCrossRef Lei M, Hua L-M, Wang D-W (2016) The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial. Benef Microbes 7:631–637PubMedCrossRef
28.
go back to reference Tu M-Y, Chen H-L, Tung Y-T, Kao C-C, Hu F-C, Chen C-M (2015) Short-term effects of Kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS ONE 10:e0144231PubMedPubMedCentralCrossRef Tu M-Y, Chen H-L, Tung Y-T, Kao C-C, Hu F-C, Chen C-M (2015) Short-term effects of Kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS ONE 10:e0144231PubMedPubMedCentralCrossRef
29.
go back to reference Lambert et al (2017) Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr 106:909–920PubMed Lambert et al (2017) Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr 106:909–920PubMed
30.
31.
go back to reference Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedCrossRef Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedCrossRef
32.
go back to reference Derrien M, van Hylckama Vlieg JE (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23(6):354–366PubMedCrossRef Derrien M, van Hylckama Vlieg JE (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23(6):354–366PubMedCrossRef
33.
go back to reference Oozeer R et al (2006) Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Appl Environ Microbiol 72(8):5615–5617PubMedPubMedCentralCrossRef Oozeer R et al (2006) Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk. Appl Environ Microbiol 72(8):5615–5617PubMedPubMedCentralCrossRef
35.
go back to reference Firmesse O et al (2008) Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction. J Mol Microbiol Biotechnol 14(1–3):90–99PubMedCrossRef Firmesse O et al (2008) Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction. J Mol Microbiol Biotechnol 14(1–3):90–99PubMedCrossRef
36.
go back to reference Fujimoto J et al (2008) Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol 126(1–2):210–215PubMedCrossRef Fujimoto J et al (2008) Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol 126(1–2):210–215PubMedCrossRef
37.
go back to reference Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73(2 Suppl):399S–405SPubMedCrossRef Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73(2 Suppl):399S–405SPubMedCrossRef
38.
go back to reference Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764 (Table of Contents)PubMedPubMedCentralCrossRef Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764 (Table of Contents)PubMedPubMedCentralCrossRef
39.
go back to reference McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371PubMedPubMedCentralCrossRef McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371PubMedPubMedCentralCrossRef
40.
42.
go back to reference Blanton LV et al (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351(6275):aad3311PubMedCrossRef Blanton LV et al (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351(6275):aad3311PubMedCrossRef
43.
go back to reference Schwarzer M et al (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef Schwarzer M et al (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef
45.
go back to reference Storelli G et al (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRef Storelli G et al (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRef
46.
go back to reference Hyun S (2013) Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci 70(13):2351–2365PubMedCrossRef Hyun S (2013) Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci 70(13):2351–2365PubMedCrossRef
47.
go back to reference Steenhout PG, Rochat F, Hager C (2009) The effect of Bifidobacterium lactis on the growth of infants: a pooled analysis of randomized controlled studies. Ann Nutr Metab 55(4):334–340PubMedCrossRef Steenhout PG, Rochat F, Hager C (2009) The effect of Bifidobacterium lactis on the growth of infants: a pooled analysis of randomized controlled studies. Ann Nutr Metab 55(4):334–340PubMedCrossRef
48.
go back to reference Sylvester FA (2017) Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol 1033:133–150PubMedCrossRef Sylvester FA (2017) Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol 1033:133–150PubMedCrossRef
50.
51.
go back to reference Xiao E et al (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22(1):120–128 e4PubMedCrossRef Xiao E et al (2017) Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe 22(1):120–128 e4PubMedCrossRef
52.
go back to reference Gatej SM et al (2017) Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol 45:204–212PubMedCrossRef Gatej SM et al (2017) Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol 45:204–212PubMedCrossRef
53.
go back to reference Ricoldi MST et al (2017) Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats. PLoS ONE 12(6):e0179946PubMedPubMedCentralCrossRef Ricoldi MST et al (2017) Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats. PLoS ONE 12(6):e0179946PubMedPubMedCentralCrossRef
54.
go back to reference Kobayashi R et al (2017) Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep 7(1):545PubMedPubMedCentralCrossRef Kobayashi R et al (2017) Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep 7(1):545PubMedPubMedCentralCrossRef
59.
go back to reference Irwin R et al (2016) Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol Regul Integr Comp Physiol 311(6):R1149–R1157PubMedPubMedCentralCrossRef Irwin R et al (2016) Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol Regul Integr Comp Physiol 311(6):R1149–R1157PubMedPubMedCentralCrossRef
60.
61.
go back to reference Harris L et al (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol 296(5):G1020–G1029PubMedPubMedCentralCrossRef Harris L et al (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol 296(5):G1020–G1029PubMedPubMedCentralCrossRef
62.
go back to reference Tremellen K, Pearce K (2012) Dysbiosis of gut microbiota (DOGMA)—a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses 79(1):104–112PubMedCrossRef Tremellen K, Pearce K (2012) Dysbiosis of gut microbiota (DOGMA)—a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses 79(1):104–112PubMedCrossRef
63.
go back to reference Maruyama K, Sano G, Matsuo K (2006) Murine osteoblasts respond to LPS and IFN-gamma similarly to macrophages. J Bone Miner Metab 24(6):454–460PubMedCrossRef Maruyama K, Sano G, Matsuo K (2006) Murine osteoblasts respond to LPS and IFN-gamma similarly to macrophages. J Bone Miner Metab 24(6):454–460PubMedCrossRef
64.
go back to reference Moriyama H, Ukai T, Hara Y (2002) Interferon-gamma production changes in parallel with bacterial lipopolysaccharide induced bone resorption in mice: an immunohistometrical study. Calcif Tissue Int 71(1):53–58PubMedCrossRef Moriyama H, Ukai T, Hara Y (2002) Interferon-gamma production changes in parallel with bacterial lipopolysaccharide induced bone resorption in mice: an immunohistometrical study. Calcif Tissue Int 71(1):53–58PubMedCrossRef
65.
go back to reference Braniste V et al (2009) Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 587(Pt 13):3317–3328PubMedPubMedCentralCrossRef Braniste V et al (2009) Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 587(Pt 13):3317–3328PubMedPubMedCentralCrossRef
66.
go back to reference Rosenfeldt V et al (2004) Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr 145(5):612–616PubMedCrossRef Rosenfeldt V et al (2004) Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis. J Pediatr 145(5):612–616PubMedCrossRef
67.
go back to reference Stratiki Z et al (2007) The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev 83(9):575–579PubMedCrossRef Stratiki Z et al (2007) The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev 83(9):575–579PubMedCrossRef
68.
go back to reference Madsen K et al (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591PubMedCrossRef Madsen K et al (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591PubMedCrossRef
69.
go back to reference Zareie M et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560PubMedPubMedCentralCrossRef Zareie M et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55(11):1553–1560PubMedPubMedCentralCrossRef
71.
go back to reference Zyrek AA et al (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9(3):804–816PubMedCrossRef Zyrek AA et al (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9(3):804–816PubMedCrossRef
72.
go back to reference Anderson RC et al (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309(2):184–192PubMed Anderson RC et al (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309(2):184–192PubMed
73.
go back to reference Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130(3):731–746PubMedCrossRef Resta-Lenert S, Barrett KE (2006) Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130(3):731–746PubMedCrossRef
74.
go back to reference Qin H et al (2009) L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 9:63PubMedPubMedCentralCrossRef Qin H et al (2009) L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 9:63PubMedPubMedCentralCrossRef
75.
go back to reference Moorthy G, Murali MR, Devaraj SN (2009) Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition 25(3):350–358PubMedCrossRef Moorthy G, Murali MR, Devaraj SN (2009) Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition 25(3):350–358PubMedCrossRef
76.
go back to reference Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–685PubMedCrossRef Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14(10):667–685PubMedCrossRef
77.
78.
81.
82.
go back to reference Trottier MD et al (2012) Enhanced production of early lineages of monocytic and granulocytic cells in mice with colitis. Proc Natl Acad Sci USA 109(41):16594–16599PubMedPubMedCentralCrossRef Trottier MD et al (2012) Enhanced production of early lineages of monocytic and granulocytic cells in mice with colitis. Proc Natl Acad Sci USA 109(41):16594–16599PubMedPubMedCentralCrossRef
84.
go back to reference Ciucci T et al (2015) Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64:1072–1081PubMedCrossRef Ciucci T et al (2015) Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut 64:1072–1081PubMedCrossRef
85.
go back to reference Harris L et al (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol 296:G1020–G1029 Harris L et al (2009) Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol 296:G1020–G1029
87.
go back to reference Metzger CE et al (2017) Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Miner Res 32:802–813PubMedCrossRef Metzger CE et al (2017) Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Miner Res 32:802–813PubMedCrossRef
89.
92.
go back to reference Klaenhammer TR et al (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12(10):728–734PubMedCrossRef Klaenhammer TR et al (2012) The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol 12(10):728–734PubMedCrossRef
93.
go back to reference Frei R, Akdis M, O’Mahony L (2015) Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 31(2):153–158PubMedCrossRef Frei R, Akdis M, O’Mahony L (2015) Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 31(2):153–158PubMedCrossRef
94.
go back to reference McCabe LR et al (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798PubMedPubMedCentralCrossRef McCabe LR et al (2013) Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798PubMedPubMedCentralCrossRef
95.
96.
go back to reference Thomas CM et al (2012) Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 7:e31951PubMedPubMedCentralCrossRef Thomas CM et al (2012) Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 7:e31951PubMedPubMedCentralCrossRef
98.
go back to reference Wang Z et al (2017) Probiotics protect mice from CoCrMo particles-induced osteolysis. Int J Nanomed 12:5387–5397CrossRef Wang Z et al (2017) Probiotics protect mice from CoCrMo particles-induced osteolysis. Int J Nanomed 12:5387–5397CrossRef
104.
go back to reference Ghanem KZ, Badawy IH, ABDEL-SALAM AM (2004) Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralization in rats. Milchwissenschaft 59:472–475 Ghanem KZ, Badawy IH, ABDEL-SALAM AM (2004) Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralization in rats. Milchwissenschaft 59:472–475
112.
go back to reference Mutuş R, Kocabagli N, Alp M et al (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625PubMed Mutuş R, Kocabagli N, Alp M et al (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625PubMed
113.
go back to reference Plavnik I, Scott ML (1980) Effects of additional vitamins, minerals, or brewer’s yeast upon leg weaknesses in broiler chickens. Poult Sci 59:459–467PubMedCrossRef Plavnik I, Scott ML (1980) Effects of additional vitamins, minerals, or brewer’s yeast upon leg weaknesses in broiler chickens. Poult Sci 59:459–467PubMedCrossRef
114.
go back to reference Nahashon SN, Nakaue HS, Mirosh LW (1994) Production variables and nutrient retention in single comb White Leghorn laying pullets fed diets supplemented with direct-fed microbials. Poult Sci 73:1699–1711PubMedCrossRef Nahashon SN, Nakaue HS, Mirosh LW (1994) Production variables and nutrient retention in single comb White Leghorn laying pullets fed diets supplemented with direct-fed microbials. Poult Sci 73:1699–1711PubMedCrossRef
Metadata
Title
Advances in Probiotic Regulation of Bone and Mineral Metabolism
Authors
Laura R. McCabe
Narayanan Parameswaran
Publication date
01-04-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 4/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-018-0403-7

Other articles of this Issue 4/2018

Calcified Tissue International 4/2018 Go to the issue