Skip to main content
Top
Published in: Calcified Tissue International 4/2018

01-04-2018 | Review

Gut Microbiota and Host Juvenile Growth

Authors: Martin Schwarzer, Maura Strigini, François Leulier

Published in: Calcified Tissue International | Issue 4/2018

Login to get access

Abstract

Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual’s intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host’s juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.
Glossary
Dysbiosis
Microbial imbalance in the gastrointestinal tract. Change in numbers or proportion of different members of microbiome resulting in the adverse effects on the host
Environmental enteropathy
Chronic disease of small intestine characterized by gut inflammation and barrier disruption, malabsorption, and systemic inflammation in the absence of diarrhea. Endemic in the areas with poor sanitation and high enteropathogen burden
Gnotobiosis
A condition in which all the forms of life associated with an organism can be accounted for. An extreme case is germ-free (axenic) animal which means organism with no associated living microbiota detectable by the up-to-date techniques
Holobiont
The assembly of different species that form an ecological unit. For the purpose of this review, it is used as the eukaryotic host plus all of its symbiotic microbes
Kwashiorkor
Severe form of undernutrition when protein intake is insufficient
Microbiome
The collective genomes of the microorganisms that reside in an environmental niche
Microbiota
An ecological community of commensal, symbiotic, and pathogenic microorganisms found in and on a multicellular organism. It includes bacteria, archaea, protists, fungi, and viruses
Nidifugous
Nidifugous organisms are those that leave the nest shortly after hatching or birth. They are born with open eyes and are capable of independent locomotion
Prebiotics
Non-digestible oligo- and polysaccharide compounds that induce the growth or activity of certain microorganisms
Probiotics
Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host
Somatotropic axis
One of the major hormonal systems regulating postnatal growth in vertebrates. It refers to the hormonal signaling from hypothalamus to anterior pituitary gland, resulting in the release of growth hormone, which in turn stimulates the production of insulin-like growth factor-1 in the liver and peripheral organs
Subtherapeutical antibiotic treatment
Subtherapeutic use of antibiotics in animal feed, as opposed to therapeutic or disease-treating use, enhances efficiency of livestock production by promoting growth. Specifically, through a still unknown mechanism, an animal on subtherapeutic doses of antibiotics will, on a lesser quantity of feed, gain an equal amount of weight as an untreated animal
Literature
1.
go back to reference Efstratiadis A (1998) Genetics of mouse growth. Int J Dev Biol 42(7):955–976PubMed Efstratiadis A (1998) Genetics of mouse growth. Int J Dev Biol 42(7):955–976PubMed
2.
go back to reference Wilson RS (1979) Twin growth: initial deficit, recovery, and trends in concordance from birth to nine years. ‎Ann Hum Biol 6(3):205–220PubMedCrossRef Wilson RS (1979) Twin growth: initial deficit, recovery, and trends in concordance from birth to nine years. ‎Ann Hum Biol 6(3):205–220PubMedCrossRef
8.
go back to reference Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, Muehlbauer MJ, Ilkayeva O, Wu C, Struckmeyer T, Barile D, Mangani C, Jorgensen J, Fan YM, Maleta K, Dewey KG, Ashorn P, Newgard CB, Lebrilla C, Mills DA, Gordon JI (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. https://doi.org/10.1016/j.cell.2016.01.024 PubMedPubMedCentralCrossRef Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, Muehlbauer MJ, Ilkayeva O, Wu C, Struckmeyer T, Barile D, Mangani C, Jorgensen J, Fan YM, Maleta K, Dewey KG, Ashorn P, Newgard CB, Lebrilla C, Mills DA, Gordon JI (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. https://​doi.​org/​10.​1016/​j.​cell.​2016.​01.​024 PubMedPubMedCentralCrossRef
9.
go back to reference Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRef
10.
go back to reference Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674PubMedCrossRef Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674PubMedCrossRef
12.
go back to reference Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRef Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRef
13.
go back to reference Mindell DP (1992) Phylogenetic consequences of symbioses: eukarya and eubacteria are not monophyletic taxa. Bio Syst 27(1):53–62 Mindell DP (1992) Phylogenetic consequences of symbioses: eukarya and eubacteria are not monophyletic taxa. Bio Syst 27(1):53–62
14.
go back to reference McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236. https://doi.org/10.1073/pnas.1218525110 PubMedPubMedCentralCrossRef McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236. https://​doi.​org/​10.​1073/​pnas.​1218525110 PubMedPubMedCentralCrossRef
21.
go back to reference McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037):1491–1494PubMedCrossRef McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037):1491–1494PubMedCrossRef
29.
go back to reference Pasteur L (1885) Observations related to the previous notes from M. Duclaux. CR Acad Sci 100:68 Pasteur L (1885) Observations related to the previous notes from M. Duclaux. CR Acad Sci 100:68
30.
go back to reference Nuttal GHF, Thierfelder H (1895) Thierishes Leben ohne Bakterien im Verdauungskanal. Hoppe-Seyler’s Z Physiol Chem 21:109–121CrossRef Nuttal GHF, Thierfelder H (1895) Thierishes Leben ohne Bakterien im Verdauungskanal. Hoppe-Seyler’s Z Physiol Chem 21:109–121CrossRef
31.
go back to reference Gordon HA (1960) The germ-free animal. Its use in the study of “physiologic” effects of the normal microbial flora on the animal host. Am J Dig Dis 5:841–867PubMedCrossRef Gordon HA (1960) The germ-free animal. Its use in the study of “physiologic” effects of the normal microbial flora on the animal host. Am J Dig Dis 5:841–867PubMedCrossRef
32.
go back to reference Wollman E (1911) Sur l’élevage des mouches stériles. Ann Inst Pasteur 25:79–88 Wollman E (1911) Sur l’élevage des mouches stériles. Ann Inst Pasteur 25:79–88
33.
go back to reference Reyniers JA (1957) The production and use of germ-free animals in experimental biology and medicine. Am J Vet Res 18(68):678–687PubMed Reyniers JA (1957) The production and use of germ-free animals in experimental biology and medicine. Am J Vet Res 18(68):678–687PubMed
34.
go back to reference Trexler PC, Reynolds LI (1957) Flexible film apparatus for the rearing and use of germfree animals. Appl Microbiol 5(6):406–412PubMedPubMedCentral Trexler PC, Reynolds LI (1957) Flexible film apparatus for the rearing and use of germfree animals. Appl Microbiol 5(6):406–412PubMedPubMedCentral
36.
go back to reference Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170PubMedPubMedCentral Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170PubMedPubMedCentral
38.
go back to reference Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncir T, Kverka M, Zakostelska Z, Klimesova K, Pribylova J, Bartova J, Sanchez D, Fundova P, Borovska D, Srutkova D, Zidek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120. https://doi.org/10.1038/cmi.2010.67 PubMedPubMedCentralCrossRef Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncir T, Kverka M, Zakostelska Z, Klimesova K, Pribylova J, Bartova J, Sanchez D, Fundova P, Borovska D, Srutkova D, Zidek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120. https://​doi.​org/​10.​1038/​cmi.​2010.​67 PubMedPubMedCentralCrossRef
40.
go back to reference Bakula M (1969) The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol 14(3):365–374PubMedCrossRef Bakula M (1969) The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol 14(3):365–374PubMedCrossRef
41.
go back to reference Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37(12):1371–1378PubMedCrossRef Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37(12):1371–1378PubMedCrossRef
43.
go back to reference McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236PubMedPubMedCentralCrossRef McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236PubMedPubMedCentralCrossRef
57.
go back to reference Matos R, Schwarzer M, Gervais H, Courtin P, Joncour P, Gillet B, Ma D, Bulteau AL, Martino ME, Hughes S, Chapot-Chartier MP, Leulier F (2017) D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition. Nature microbiol. https://doi.org/10.1038/s41564-017-0038-x Matos R, Schwarzer M, Gervais H, Courtin P, Joncour P, Gillet B, Ma D, Bulteau AL, Martino ME, Hughes S, Chapot-Chartier MP, Leulier F (2017) D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition. Nature microbiol. https://​doi.​org/​10.​1038/​s41564-017-0038-x
86.
go back to reference Breier BH (1999) Regulation of protein and energy metabolism by the somatotropic axis. Domest Anim Endocrinol 17(2–3):209–218PubMedCrossRef Breier BH (1999) Regulation of protein and energy metabolism by the somatotropic axis. Domest Anim Endocrinol 17(2–3):209–218PubMedCrossRef
87.
go back to reference Hartman ML, Veldhuis JD, Thorner MO (1993) Normal control of growth hormone secretion. Horm Res 40(1–3):37–47PubMedCrossRef Hartman ML, Veldhuis JD, Thorner MO (1993) Normal control of growth hormone secretion. Horm Res 40(1–3):37–47PubMedCrossRef
88.
go back to reference Bartke A, Sun LY, Longo V (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93(2):571–598PubMedPubMedCentralCrossRef Bartke A, Sun LY, Longo V (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93(2):571–598PubMedPubMedCentralCrossRef
103.
go back to reference Cohendy M (1912) Experiences sur la vie sans microbes. Ann inst Pasteur 26:106–137 Cohendy M (1912) Experiences sur la vie sans microbes. Ann inst Pasteur 26:106–137
105.
go back to reference Reyniers JA, Trexler PC et al (1948) A complete life-cycle in the germ-free bantam chicken. Nature 162(4132):67PubMed Reyniers JA, Trexler PC et al (1948) A complete life-cycle in the germ-free bantam chicken. Nature 162(4132):67PubMed
106.
go back to reference Coates ME, Fuller R, Harrison GF, Lev M, Suffolk SF (1963) A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br J Nutr 17:141–150PubMedCrossRef Coates ME, Fuller R, Harrison GF, Lev M, Suffolk SF (1963) A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br J Nutr 17:141–150PubMedCrossRef
107.
go back to reference Forbes M, Park JT (1959) Growth of germ-free and conventional chicks: effect of diet, dietary penicillin and bacterial environment. J Nutr 67(1):69–84PubMedCrossRef Forbes M, Park JT (1959) Growth of germ-free and conventional chicks: effect of diet, dietary penicillin and bacterial environment. J Nutr 67(1):69–84PubMedCrossRef
110.
go back to reference Furuse M, Yokota H (1984) Protein and energy utilization in germ-free and conventional chicks given diets containing different levels of dietary protein. Br J Nutr 51(2):255–264PubMedCrossRef Furuse M, Yokota H (1984) Protein and energy utilization in germ-free and conventional chicks given diets containing different levels of dietary protein. Br J Nutr 51(2):255–264PubMedCrossRef
111.
go back to reference Furuse M, Okumura J (1994) Nutritional and physiological characteristics in germ-free chickens. Compar Biochem Physiol A 109(3):547–556CrossRef Furuse M, Okumura J (1994) Nutritional and physiological characteristics in germ-free chickens. Compar Biochem Physiol A 109(3):547–556CrossRef
113.
go back to reference Roura E, Homedes J, Klasing KC (1992) Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J Nutr 122(12):2383–2390PubMedCrossRef Roura E, Homedes J, Klasing KC (1992) Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J Nutr 122(12):2383–2390PubMedCrossRef
115.
go back to reference Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 16(2):175–188PubMedPubMedCentralCrossRef Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 16(2):175–188PubMedPubMedCentralCrossRef
116.
go back to reference Luckey TD (1956) Mode of action of antibiotics—evidence from germfree birds. In: Proceedings, First International Conference on the Use of Antibiotics in Agriculture. The National Academies Press, Washington, DC. https://doi.org/10.17226/21265 Luckey TD (1956) Mode of action of antibiotics—evidence from germfree birds. In: Proceedings, First International Conference on the Use of Antibiotics in Agriculture. The National Academies Press, Washington, DC. https://​doi.​org/​10.​17226/​21265
119.
go back to reference Luckey TD (1963) Germfree life and gnotobiology. Academic Press, Cambridge Luckey TD (1963) Germfree life and gnotobiology. Academic Press, Cambridge
120.
go back to reference Teah BA (1960) Germ-free animal production at Lobund Institute. In: Proceedings of the 2nd symposium on gnotobiotic technology. University of Notre Dame Press, p 25 Teah BA (1960) Germ-free animal production at Lobund Institute. In: Proceedings of the 2nd symposium on gnotobiotic technology. University of Notre Dame Press, p 25
121.
go back to reference Pleasants JR (1959) Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 78:116–126PubMedCrossRef Pleasants JR (1959) Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 78:116–126PubMedCrossRef
123.
go back to reference Dubos RJ, Schaedler RW (1960) The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 111:407–417PubMedPubMedCentralCrossRef Dubos RJ, Schaedler RW (1960) The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 111:407–417PubMedPubMedCentralCrossRef
124.
125.
go back to reference De Palma G, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pigrau Pastor M, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb M-G, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9(379):eaaf6397. https://doi.org/10.1126/scitranslmed.aaf6397 PubMedCrossRef De Palma G, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pigrau Pastor M, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb M-G, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9(379):eaaf6397. https://​doi.​org/​10.​1126/​scitranslmed.​aaf6397 PubMedCrossRef
126.
go back to reference Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. https://doi.org/10.1126/science.1241214 PubMedCrossRef Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. https://​doi.​org/​10.​1126/​science.​1241214 PubMedCrossRef
127.
go back to reference Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. https://doi.org/10.1126/science.aad3311 PubMedCentral Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. https://​doi.​org/​10.​1126/​science.​aad3311 PubMedCentral
131.
go back to reference Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, Chung J, Sohn J, Barber CM, Goldfarb DS, Raju K, Abubucker S, Zhou Y, Ruiz VE, Li H, Mitreva M, Alekseyenko AV, Weinstock GM, Sodergren E, Blaser MJ (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486. https://doi.org/10.1038/ncomms8486 PubMedPubMedCentralCrossRef Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, Chung J, Sohn J, Barber CM, Goldfarb DS, Raju K, Abubucker S, Zhou Y, Ruiz VE, Li H, Mitreva M, Alekseyenko AV, Weinstock GM, Sodergren E, Blaser MJ (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486. https://​doi.​org/​10.​1038/​ncomms8486 PubMedPubMedCentralCrossRef
Metadata
Title
Gut Microbiota and Host Juvenile Growth
Authors
Martin Schwarzer
Maura Strigini
François Leulier
Publication date
01-04-2018
Publisher
Springer US
Published in
Calcified Tissue International / Issue 4/2018
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0368-y

Other articles of this Issue 4/2018

Calcified Tissue International 4/2018 Go to the issue