Skip to main content
Top
Published in: Calcified Tissue International 6/2017

Open Access 01-06-2017 | Original Research

Co-expression of DKK-1 and Sclerostin in Subchondral Bone of the Proximal Femoral Heads from Osteoarthritic Hips

Authors: Allahdad Zarei, Philippa A. Hulley, Afsie Sabokbar, M. Kassim Javaid

Published in: Calcified Tissue International | Issue 6/2017

Login to get access

Abstract

Background

Osteoarthritis (OA) is a progressively degenerative joint disease influenced by structural and metabolic factors. There is growing evidence that subchondral bone is involved in both symptomatic and structural progression in OA. The Wnt pathway has been implicated in the progression of OA but the expression and function of the Wnt inhibitors, Dikkopf (DKK-1) and sclerostin (SOST), are unclear.

Methods

We examined the regional distribution of DKK-1 and SOST in subchondral bone of the femoral head using resection specimens following arthroplasty in patients presenting with end-stage OA. Cylindrical cores for immunohistochemistry were taken through midpoint of full thickness cartilage defect, partial cartilage defect, through base of osteophyte and through macroscopically normal cartilage.

Results

Subchondral bone was thickest in cores taken from regions with full cartilage defect and thinnest in cores taken from osteophyte regions. In subchondral bone, expression of both DKK-1 and SOST was observed exclusively in osteocytes. Expression was highest in subchondral bone in cores taken from regions with partial but not full thickness cartilage defects. DKK-1 but not SOST was expressed by chondrocytes in cores with macroscopically normal cartilage.

Conclusion

The current study describes the regional cellular distribution of SOST and DKK-1 in hip OA. Expression was highest in the osteocytes in bone underlying partial thickness cartilage defects. It is however not clear if this is a cause or a consequence of alterations in the overlying cartilage. However, it is suggestive of an active remodeling process which might be targeted by disease-modifying agents.
Literature
1.
go back to reference Lories RJ, Luyten FP (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49CrossRefPubMed Lories RJ, Luyten FP (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49CrossRefPubMed
2.
go back to reference Frost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262(4):398–419CrossRefPubMed Frost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262(4):398–419CrossRefPubMed
3.
go back to reference Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215(3):578–587CrossRefPubMed Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215(3):578–587CrossRefPubMed
4.
go back to reference Diarra D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163CrossRefPubMed Diarra D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163CrossRefPubMed
5.
go back to reference Radin, E.L., R.M. Rose (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213: 34–40. Radin, E.L., R.M. Rose (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213: 34–40.
6.
go back to reference Li G et al (2013) Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 15(6):1CrossRef Li G et al (2013) Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 15(6):1CrossRef
7.
go back to reference Felson DT et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646CrossRefPubMed Felson DT et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646CrossRefPubMed
9.
go back to reference Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127(14):3141–3159PubMed Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127(14):3141–3159PubMed
10.
go back to reference Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104(3):341–351CrossRefPubMed Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104(3):341–351CrossRefPubMed
12.
go back to reference Hwang S-G et al (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279(25):26597–26604CrossRefPubMed Hwang S-G et al (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279(25):26597–26604CrossRefPubMed
13.
go back to reference Rubinfeld B et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026CrossRefPubMed Rubinfeld B et al (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026CrossRefPubMed
14.
go back to reference Behrens J et al (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382(6592):638–642CrossRefPubMed Behrens J et al (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382(6592):638–642CrossRefPubMed
15.
go back to reference Glinka A et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362CrossRefPubMed Glinka A et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362CrossRefPubMed
16.
go back to reference Semënov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280(29):26770–26775CrossRefPubMed Semënov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280(29):26770–26775CrossRefPubMed
17.
go back to reference van Wesenbeeck L et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72(3):763–771CrossRefPubMedPubMedCentral van Wesenbeeck L et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72(3):763–771CrossRefPubMedPubMedCentral
18.
go back to reference Hamersma H, Gardner J, Beighton P (2003) The natural history of sclerosteosis. Clin Genet 63(3):192–197CrossRefPubMed Hamersma H, Gardner J, Beighton P (2003) The natural history of sclerosteosis. Clin Genet 63(3):192–197CrossRefPubMed
19.
go back to reference Imai K et al (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun 345(4):1615–1620CrossRefPubMed Imai K et al (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun 345(4):1615–1620CrossRefPubMed
20.
go back to reference Ijiri K et al (2002) Differential expression patterns of secreted frizzled related protein genes in synovial cells from patients with arthritis. J Rheumatol 29(11):2266–2270PubMed Ijiri K et al (2002) Differential expression patterns of secreted frizzled related protein genes in synovial cells from patients with arthritis. J Rheumatol 29(11):2266–2270PubMed
22.
go back to reference Lane NE et al (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56(10):3319–3325CrossRefPubMed Lane NE et al (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56(10):3319–3325CrossRefPubMed
23.
go back to reference Leijten J., et al (2012) Gremlin 1, Frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64(10): 3302–3312.CrossRefPubMed Leijten J., et al (2012) Gremlin 1, Frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64(10): 3302–3312.CrossRefPubMed
24.
go back to reference Weng LH et al (2012) Dkk-1 promotes angiogenic responses and cartilage matrix proteinase secretion in synovial fibroblasts from osteoarthritic joints. Arthritis Rheum 64(10):3267–3277CrossRefPubMed Weng LH et al (2012) Dkk-1 promotes angiogenic responses and cartilage matrix proteinase secretion in synovial fibroblasts from osteoarthritic joints. Arthritis Rheum 64(10):3267–3277CrossRefPubMed
25.
go back to reference Weng LH et al (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62(5):1393–1402CrossRefPubMed Weng LH et al (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62(5):1393–1402CrossRefPubMed
26.
go back to reference Oh H, Chun CH, Chun JS (2012) Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 64(8):2568–2578CrossRefPubMed Oh H, Chun CH, Chun JS (2012) Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 64(8):2568–2578CrossRefPubMed
27.
go back to reference Power J et al (2010) Sclerostin and the regulation of bone formation: effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res 25(8):1867–1876CrossRefPubMed Power J et al (2010) Sclerostin and the regulation of bone formation: effects in hip osteoarthritis and femoral neck fracture. J Bone Miner Res 25(8):1867–1876CrossRefPubMed
28.
go back to reference Robling AG et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875CrossRefPubMed Robling AG et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875CrossRefPubMed
29.
go back to reference Wijenayaka A et al (2009) The proinflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFa induce the mitogen activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. Bone 44:S63CrossRef Wijenayaka A et al (2009) The proinflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFa induce the mitogen activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. Bone 44:S63CrossRef
30.
go back to reference van Bezooijen R et al (2009) Sclerostin in mineralized matrices and van Buchem disease. J Dent Res 88(6):569–574CrossRefPubMed van Bezooijen R et al (2009) Sclerostin in mineralized matrices and van Buchem disease. J Dent Res 88(6):569–574CrossRefPubMed
31.
go back to reference Karlsson C et al (2010) Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthr Cartil 18(4):581–592CrossRefPubMed Karlsson C et al (2010) Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthr Cartil 18(4):581–592CrossRefPubMed
32.
go back to reference Chan B et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19(7):874–885CrossRefPubMed Chan B et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19(7):874–885CrossRefPubMed
33.
go back to reference Goldring SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4(4):249–258CrossRefPubMedPubMedCentral Goldring SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4(4):249–258CrossRefPubMedPubMedCentral
34.
go back to reference Knowles H et al (2012) Chondroclasts are mature osteoclasts which are capable of cartilage matrix resorption. Virchows Arch 461(2):205–210CrossRefPubMed Knowles H et al (2012) Chondroclasts are mature osteoclasts which are capable of cartilage matrix resorption. Virchows Arch 461(2):205–210CrossRefPubMed
Metadata
Title
Co-expression of DKK-1 and Sclerostin in Subchondral Bone of the Proximal Femoral Heads from Osteoarthritic Hips
Authors
Allahdad Zarei
Philippa A. Hulley
Afsie Sabokbar
M. Kassim Javaid
Publication date
01-06-2017
Publisher
Springer US
Published in
Calcified Tissue International / Issue 6/2017
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0246-7

Other articles of this Issue 6/2017

Calcified Tissue International 6/2017 Go to the issue