Skip to main content
Top
Published in: Calcified Tissue International 6/2016

01-06-2016 | Original Research

Parathyroid Hormone (1–34) Transiently Protects Against Radiation-Induced Bone Fragility

Authors: Megan E. Oest, Kenneth A. Mann, Nicholas D. Zimmerman, Timothy A. Damron

Published in: Calcified Tissue International | Issue 6/2016

Login to get access

Abstract

Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1–34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baxter NN, Habermann EB, Tepper JE, Durham SB, Virnig BA (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294:2587–2593CrossRefPubMed Baxter NN, Habermann EB, Tepper JE, Durham SB, Virnig BA (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294:2587–2593CrossRefPubMed
2.
go back to reference Oh D, Huh SJ, Nam H, Park W, Han Y, do Lim H, Ahn YC, Lee JW, Kim BG, Bae DS, Lee JH (2008) Pelvic insufficiency fracture after pelvic radiotherapy for cervical cancer: analysis of risk factors. Int J Radiat Oncol Biol Phys 70:1183–1188CrossRefPubMed Oh D, Huh SJ, Nam H, Park W, Han Y, do Lim H, Ahn YC, Lee JW, Kim BG, Bae DS, Lee JH (2008) Pelvic insufficiency fracture after pelvic radiotherapy for cervical cancer: analysis of risk factors. Int J Radiat Oncol Biol Phys 70:1183–1188CrossRefPubMed
3.
go back to reference Voroney JP, Hope A, Dahele MR, Purdie TG, Franks KN, Pearson S, Cho JB, Sun A, Payne DG, Bissonnette JP, Bezjak A, Brade AM (2009) Chest wall pain and rib fracture after stereotactic radiotherapy for peripheral non-small cell lung cancer. J Thorac Oncol 4:1035–1037CrossRefPubMed Voroney JP, Hope A, Dahele MR, Purdie TG, Franks KN, Pearson S, Cho JB, Sun A, Payne DG, Bissonnette JP, Bezjak A, Brade AM (2009) Chest wall pain and rib fracture after stereotactic radiotherapy for peripheral non-small cell lung cancer. J Thorac Oncol 4:1035–1037CrossRefPubMed
4.
go back to reference Park SH, Kim JC, Lee JE, Park IK (2011) Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT. Radiat Oncol J 29:269–276CrossRefPubMedPubMedCentral Park SH, Kim JC, Lee JE, Park IK (2011) Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT. Radiat Oncol J 29:269–276CrossRefPubMedPubMedCentral
5.
go back to reference Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K, Schefter TE, Kavanagh BD, Larner JM (2010) Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 76:796–801CrossRefPubMed Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K, Schefter TE, Kavanagh BD, Larner JM (2010) Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 76:796–801CrossRefPubMed
6.
go back to reference Helmstedter CS, Goebel M, Zlotecki R, Scarborough MT (2001) Pathologic fractures after surgery and radiation for soft tissue tumors. Clin Orthop Relat Res 389:165–172CrossRefPubMed Helmstedter CS, Goebel M, Zlotecki R, Scarborough MT (2001) Pathologic fractures after surgery and radiation for soft tissue tumors. Clin Orthop Relat Res 389:165–172CrossRefPubMed
7.
go back to reference Holt GE, Griffin AM, Pintilie M, Wunder JS, Catton C, O’Sullivan B, Bell RS (2005) Fractures following radiotherapy and limb-salvage surgery for lower extremity soft-tissue sarcomas. A comparison of high-dose and low-dose radiotherapy. J Bone Joint Surg Am 87:315–319CrossRefPubMed Holt GE, Griffin AM, Pintilie M, Wunder JS, Catton C, O’Sullivan B, Bell RS (2005) Fractures following radiotherapy and limb-salvage surgery for lower extremity soft-tissue sarcomas. A comparison of high-dose and low-dose radiotherapy. J Bone Joint Surg Am 87:315–319CrossRefPubMed
8.
go back to reference Bandstra ER, Pecaut MJ, Anderson ER, Willey JS, De Carlo F, Stock SR, Gridley DS, Nelson GA, Levine HG, Bateman TA (2008) Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res 169:607–614CrossRefPubMedPubMedCentral Bandstra ER, Pecaut MJ, Anderson ER, Willey JS, De Carlo F, Stock SR, Gridley DS, Nelson GA, Levine HG, Bateman TA (2008) Long-term dose response of trabecular bone in mice to proton radiation. Radiat Res 169:607–614CrossRefPubMedPubMedCentral
9.
go back to reference Hamilton SA, Pecaut MJ, Gridley DS, Travis ND, Bandstra ER, Willey JS, Nelson GA, Bateman TA (2006) A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol 101:789–793CrossRefPubMed Hamilton SA, Pecaut MJ, Gridley DS, Travis ND, Bandstra ER, Willey JS, Nelson GA, Bateman TA (2006) A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol 101:789–793CrossRefPubMed
10.
go back to reference Willey JS, Livingston EW, Robbins ME, Bourland JD, Tirado-Lee L, Smith-Sielicki H, Bateman TA (2010) Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone 46:101–111CrossRefPubMedPubMedCentral Willey JS, Livingston EW, Robbins ME, Bourland JD, Tirado-Lee L, Smith-Sielicki H, Bateman TA (2010) Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone 46:101–111CrossRefPubMedPubMedCentral
11.
go back to reference Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA (2008) Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 170:388–392CrossRefPubMedPubMedCentral Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA (2008) Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 170:388–392CrossRefPubMedPubMedCentral
12.
go back to reference Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131CrossRefPubMed Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131CrossRefPubMed
13.
go back to reference Oest ME, Franken V, Kuchera T, Strauss J, Damron TA (2014) Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation. J Orthop Res 33:334–342CrossRefPubMedPubMedCentral Oest ME, Franken V, Kuchera T, Strauss J, Damron TA (2014) Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation. J Orthop Res 33:334–342CrossRefPubMedPubMedCentral
14.
go back to reference Oteo-Alvaro A, Moreno E (2010) Atrophic humeral shaft nonunion treated with teriparatide (rh PTH 1-34): a case report. J Shoulder Elbow Surg 19:22–28CrossRef Oteo-Alvaro A, Moreno E (2010) Atrophic humeral shaft nonunion treated with teriparatide (rh PTH 1-34): a case report. J Shoulder Elbow Surg 19:22–28CrossRef
15.
go back to reference Paridis D, Karachalios T (2011) Atrophic femoral bone nonunion treated with 1-84 PTH. J Musculoskelet Neuronal Interact 11:320–322 quiz 323 PubMed Paridis D, Karachalios T (2011) Atrophic femoral bone nonunion treated with 1-84 PTH. J Musculoskelet Neuronal Interact 11:320–322 quiz 323 PubMed
16.
go back to reference Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA (2010) Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21:1041–1045CrossRefPubMed Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA (2010) Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21:1041–1045CrossRefPubMed
17.
go back to reference Gong B, Oest ME, Mann KA, Damron TA, Morris MD (2013) Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone 57:252–258CrossRefPubMedPubMedCentral Gong B, Oest ME, Mann KA, Damron TA, Morris MD (2013) Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone 57:252–258CrossRefPubMedPubMedCentral
20.
21.
go back to reference Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079CrossRefPubMedPubMedCentral Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079CrossRefPubMedPubMedCentral
22.
go back to reference Wernle JD, Damron TA, Allen MJ, Mann KA (2010) Local irradiation alters bone morphology and increases bone fragility in a mouse model. J Biomech 43:2738–2746CrossRefPubMed Wernle JD, Damron TA, Allen MJ, Mann KA (2010) Local irradiation alters bone morphology and increases bone fragility in a mouse model. J Biomech 43:2738–2746CrossRefPubMed
23.
go back to reference van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104CrossRefPubMed van der Meulen MC, Jepsen KJ, Mikic B (2001) Understanding bone strength: size isn’t everything. Bone 29:101–104CrossRefPubMed
24.
25.
go back to reference Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106CrossRefPubMed Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106CrossRefPubMed
26.
go back to reference Whitfield JF (2005) Parathyroid hormone (PTH) and hematopoiesis: new support for some old observations. J Cell Biochem 96:278–284CrossRefPubMed Whitfield JF (2005) Parathyroid hormone (PTH) and hematopoiesis: new support for some old observations. J Cell Biochem 96:278–284CrossRefPubMed
27.
go back to reference Whitfield JF (2006) Parathyroid hormone: a novel tool for treating bone marrow depletion in cancer patients caused by chemotherapeutic drugs and ionizing radiation. Cancer Lett 244:8–15CrossRefPubMed Whitfield JF (2006) Parathyroid hormone: a novel tool for treating bone marrow depletion in cancer patients caused by chemotherapeutic drugs and ionizing radiation. Cancer Lett 244:8–15CrossRefPubMed
28.
go back to reference Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2011) Parathyroid hormone regulates the distribution and osteoclastogenic potential of hematopoietic progenitors in the bone marrow. J Bone Miner Res 26:1207–1216CrossRefPubMedPubMedCentral Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2011) Parathyroid hormone regulates the distribution and osteoclastogenic potential of hematopoietic progenitors in the bone marrow. J Bone Miner Res 26:1207–1216CrossRefPubMedPubMedCentral
29.
go back to reference Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerotol A Biol Sci Med Sci 68:1209–1217CrossRef Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerotol A Biol Sci Med Sci 68:1209–1217CrossRef
30.
go back to reference Arrington SA, Fisher ER, Willick GE, Mann KA, Allen MJ (2010) Anabolic and antiresorptive drugs improve trabecular microarchitecture and reduce fracture risk following radiation therapy. Calcif Tissue Int 87:263–272CrossRefPubMed Arrington SA, Fisher ER, Willick GE, Mann KA, Allen MJ (2010) Anabolic and antiresorptive drugs improve trabecular microarchitecture and reduce fracture risk following radiation therapy. Calcif Tissue Int 87:263–272CrossRefPubMed
31.
go back to reference Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Nelson NS, Chepeha DB, Buchman SR (2013) Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis. Plast Reconstr Surg 132:91e–100eCrossRefPubMedPubMedCentral Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Nelson NS, Chepeha DB, Buchman SR (2013) Parathyroid hormone therapy mollifies radiation-induced biomechanical degradation in murine distraction osteogenesis. Plast Reconstr Surg 132:91e–100eCrossRefPubMedPubMedCentral
32.
go back to reference Gallagher KK, Deshpande S, Tchanque-Fossuo CN, Donneys A, Sarhaddi D, Nelson NS, Chepeha DB, Buchman SR (2013) Role of parathyroid hormone therapy in reversing radiation-induced nonunion and normalization of radiomorphometrics in a murine mandibular model of distraction osteogenesis. Head Neck 35:1732–1737CrossRefPubMedPubMedCentral Gallagher KK, Deshpande S, Tchanque-Fossuo CN, Donneys A, Sarhaddi D, Nelson NS, Chepeha DB, Buchman SR (2013) Role of parathyroid hormone therapy in reversing radiation-induced nonunion and normalization of radiomorphometrics in a murine mandibular model of distraction osteogenesis. Head Neck 35:1732–1737CrossRefPubMedPubMedCentral
33.
go back to reference Chandra A, Lan S, Zhu J, Lin T, Zhang X, Siclari VA, Altman AR, Cengel KA, Liu XS, Qin L (2013) PTH prevents the adverse effects of focal radiation on bone architecture in young rats. Bone 55:449–457CrossRefPubMedPubMedCentral Chandra A, Lan S, Zhu J, Lin T, Zhang X, Siclari VA, Altman AR, Cengel KA, Liu XS, Qin L (2013) PTH prevents the adverse effects of focal radiation on bone architecture in young rats. Bone 55:449–457CrossRefPubMedPubMedCentral
34.
go back to reference Chandra A, Lin T, Tribble MB, Zhu J, Altman AR, Tseng WJ, Zhang Y, Akintoye SO, Cengel K, Liu XS, Qin L (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40CrossRefPubMedPubMedCentral Chandra A, Lin T, Tribble MB, Zhu J, Altman AR, Tseng WJ, Zhang Y, Akintoye SO, Cengel K, Liu XS, Qin L (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40CrossRefPubMedPubMedCentral
35.
go back to reference Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK (2011) An irradiation-altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 152:4525–4536CrossRefPubMedPubMedCentral Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK (2011) An irradiation-altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 152:4525–4536CrossRefPubMedPubMedCentral
36.
go back to reference Acil Y, Springer IN, Niehoff P, Gassling V, Warnke PH, Acmaz S, Sonmez TT, Kimmig B, Lefteris V, Wiltfang J (2007) Proof of direct radiogenic destruction of collagen in vitro. Strahlenther Onkol 183:374–379CrossRefPubMed Acil Y, Springer IN, Niehoff P, Gassling V, Warnke PH, Acmaz S, Sonmez TT, Kimmig B, Lefteris V, Wiltfang J (2007) Proof of direct radiogenic destruction of collagen in vitro. Strahlenther Onkol 183:374–379CrossRefPubMed
37.
go back to reference Green DE, Adler BJ, Chan ME, Lennon JJ, Acerbo AS, Miller LM, Rubin CT (2013) Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes. PLoS One 8:e64952CrossRefPubMedPubMedCentral Green DE, Adler BJ, Chan ME, Lennon JJ, Acerbo AS, Miller LM, Rubin CT (2013) Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes. PLoS One 8:e64952CrossRefPubMedPubMedCentral
38.
go back to reference Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, Wan M, Lei W, Armour M, Tryggestad E, Wong J, Wen CY, Lu WW, Frassica FJ (2011) Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci USA 108:1609–1614CrossRefPubMedPubMedCentral Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, Wan M, Lei W, Armour M, Tryggestad E, Wong J, Wen CY, Lu WW, Frassica FJ (2011) Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci USA 108:1609–1614CrossRefPubMedPubMedCentral
39.
go back to reference Green DE, Rubin CT (2014) Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63C:87–94CrossRef Green DE, Rubin CT (2014) Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63C:87–94CrossRef
40.
go back to reference Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263CrossRefPubMedPubMedCentral Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263CrossRefPubMedPubMedCentral
41.
go back to reference Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846CrossRefPubMed Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846CrossRefPubMed
42.
go back to reference Calvi LM, Bromberg O, Rhee Y, Weber JM, Smith JN, Basil MJ, Frisch BJ, Bellido T (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119:2489–2499CrossRefPubMedPubMedCentral Calvi LM, Bromberg O, Rhee Y, Weber JM, Smith JN, Basil MJ, Frisch BJ, Bellido T (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119:2489–2499CrossRefPubMedPubMedCentral
44.
go back to reference Huber BC, Grabmaier U, Brunner S (2014) Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World J Stem Cells 6:637–643CrossRefPubMedPubMedCentral Huber BC, Grabmaier U, Brunner S (2014) Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World J Stem Cells 6:637–643CrossRefPubMedPubMedCentral
45.
go back to reference Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–3561PubMed Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–3561PubMed
Metadata
Title
Parathyroid Hormone (1–34) Transiently Protects Against Radiation-Induced Bone Fragility
Authors
Megan E. Oest
Kenneth A. Mann
Nicholas D. Zimmerman
Timothy A. Damron
Publication date
01-06-2016
Publisher
Springer US
Published in
Calcified Tissue International / Issue 6/2016
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-016-0111-0

Other articles of this Issue 6/2016

Calcified Tissue International 6/2016 Go to the issue