Skip to main content
Top
Published in: Calcified Tissue International 1/2014

01-01-2014 | Review

Cells of the Immune System Orchestrate Changes in Bone Cell Function

Authors: Sarah E. Wythe, Vicky Nicolaidou, Nicole J. Horwood

Published in: Calcified Tissue International | Issue 1/2014

Login to get access

Abstract

There is a complex interplay between the cells of the immune system and bone. Immune cells, such as T and NK cells, are able to enhance osteoclast formation via the production of RANKL. Yet there is increasing evidence to show that during the resolution of inflammation or as a consequence of increased osteoclastogenesis there is an anabolic response via the formation of more osteoblasts. Furthermore, osteoblasts themselves are involved in the control of immune cell function, thus promoting the resolution of inflammation. Hence, the concept of “coupling”—how bone formation is linked to resorption—needs to be more inclusive rather than restricting our focus to osteoblast–osteoclast interactions as in a whole organism these cells are never in isolation. This review will investigate the role of immune cells in normal bone homeostasis and in inflammatory diseases where the balance between resorption and formation is lost.
Literature
1.
go back to reference Howard GA et al (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78(5):3204–3208PubMed Howard GA et al (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78(5):3204–3208PubMed
2.
go back to reference Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11(2):76–81PubMed Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11(2):76–81PubMed
3.
go back to reference Tamma R, Zallone A (2012) Osteoblast and osteoclast crosstalks: from OAF to Ephrin. Inflamm Allergy Drug Targets 11(3):196–200PubMed Tamma R, Zallone A (2012) Osteoblast and osteoclast crosstalks: from OAF to Ephrin. Inflamm Allergy Drug Targets 11(3):196–200PubMed
4.
go back to reference Takayanagi H (2012) New developments in osteoimmunology. Nat Rev Rheumatol 8(11):684–689PubMed Takayanagi H (2012) New developments in osteoimmunology. Nat Rev Rheumatol 8(11):684–689PubMed
5.
go back to reference Horton MA et al (1985) On the origin of the osteoclast: the cell surface phenotype of rodent osteoclasts. Calcif Tissue Int 37(1):46–50PubMed Horton MA et al (1985) On the origin of the osteoclast: the cell surface phenotype of rodent osteoclasts. Calcif Tissue Int 37(1):46–50PubMed
6.
go back to reference Quinn JM et al (2000) Fibroblastic stromal cells express receptor activator of NF-kappaB ligand and support osteoclast differentiation. J Bone Miner Res 15(8):1459–1466PubMed Quinn JM et al (2000) Fibroblastic stromal cells express receptor activator of NF-kappaB ligand and support osteoclast differentiation. J Bone Miner Res 15(8):1459–1466PubMed
7.
go back to reference Soderstrom K et al (2010) Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci USA 107(29):13028–13033PubMed Soderstrom K et al (2010) Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci USA 107(29):13028–13033PubMed
8.
go back to reference Horwood NJ et al (1999) Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 265(1):144–150PubMed Horwood NJ et al (1999) Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 265(1):144–150PubMed
9.
go back to reference Kong YY et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309PubMed Kong YY et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309PubMed
10.
go back to reference Shinoda K et al (2003) Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone 33(4):711–720PubMed Shinoda K et al (2003) Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone 33(4):711–720PubMed
11.
go back to reference Rifas L, Arackal S, Weitzmann MN (2003) Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem 88(4):650–659 PubMed Rifas L, Arackal S, Weitzmann MN (2003) Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem 88(4):650–659 PubMed
12.
go back to reference Gough AK et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344(8914):23–27PubMed Gough AK et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344(8914):23–27PubMed
13.
go back to reference Loftus EV Jr et al (2003) Risk of fracture in ulcerative colitis: a population-based study from Olmsted County, Minnesota. Clin Gastroenterol Hepatol 1(6):465–473PubMed Loftus EV Jr et al (2003) Risk of fracture in ulcerative colitis: a population-based study from Olmsted County, Minnesota. Clin Gastroenterol Hepatol 1(6):465–473PubMed
14.
go back to reference Magrey M, Khan MA (2010) Osteoporosis in ankylosing spondylitis. Curr Rheumatol Rep 12(5):332–336PubMed Magrey M, Khan MA (2010) Osteoporosis in ankylosing spondylitis. Curr Rheumatol Rep 12(5):332–336PubMed
15.
go back to reference Spector TD et al (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306(6877):558PubMed Spector TD et al (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306(6877):558PubMed
16.
go back to reference Eyerich S et al (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119(12):3573–3585PubMedCentralPubMed Eyerich S et al (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119(12):3573–3585PubMedCentralPubMed
17.
go back to reference Murphy CA et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198(12):1951–1957PubMedCentralPubMed Murphy CA et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198(12):1951–1957PubMedCentralPubMed
18.
go back to reference Takayanagi H et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605PubMed Takayanagi H et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605PubMed
19.
go back to reference Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426PubMed Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426PubMed
20.
go back to reference Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40(4):287–293PubMed Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40(4):287–293PubMed
21.
go back to reference Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352PubMedCentralPubMed Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352PubMedCentralPubMed
22.
go back to reference Zaiss MM et al (2010) Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol 184(12):7238–7246PubMed Zaiss MM et al (2010) Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol 184(12):7238–7246PubMed
23.
go back to reference Kim YG et al (2007) Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun 357(4):1046–1052PubMed Kim YG et al (2007) Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun 357(4):1046–1052PubMed
24.
go back to reference Wythe SE et al (2013) Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann Rheum Dis 72(1):129–135PubMedCentralPubMed Wythe SE et al (2013) Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann Rheum Dis 72(1):129–135PubMedCentralPubMed
25.
go back to reference Appel H et al (2006) Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 54(9):2845–2851PubMed Appel H et al (2006) Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 54(9):2845–2851PubMed
26.
go back to reference Bowness P et al (2011) Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 186(4):2672–2680PubMedCentralPubMed Bowness P et al (2011) Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 186(4):2672–2680PubMedCentralPubMed
27.
go back to reference Daoussis D et al (2010) Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62(1):150–158PubMed Daoussis D et al (2010) Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62(1):150–158PubMed
28.
go back to reference Appel H et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60(11):3257–3262PubMed Appel H et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60(11):3257–3262PubMed
29.
go back to reference Chen HA et al (2010) Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol 37(10):2126–2132PubMed Chen HA et al (2010) Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol 37(10):2126–2132PubMed
30.
go back to reference Vosse D et al (2008) Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 47(8):1219–1222 Vosse D et al (2008) Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 47(8):1219–1222
31.
go back to reference Braun J, Baraliakos X (2011) Imaging of axial spondyloarthritis including ankylosing spondylitis. Ann Rheum Dis 70(Suppl 1):i97–i103PubMed Braun J, Baraliakos X (2011) Imaging of axial spondyloarthritis including ankylosing spondylitis. Ann Rheum Dis 70(Suppl 1):i97–i103PubMed
32.
go back to reference Byrne FR et al (2005) CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut 54(1):78–86PubMed Byrne FR et al (2005) CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut 54(1):78–86PubMed
33.
go back to reference Ruutu M et al (2012) Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum 64(7):2211–2222PubMed Ruutu M et al (2012) Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum 64(7):2211–2222PubMed
35.
go back to reference Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801PubMed Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801PubMed
36.
go back to reference Jilka RL et al (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101(9):1942–1950PubMedCentralPubMed Jilka RL et al (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101(9):1942–1950PubMedCentralPubMed
37.
go back to reference Kimble RB et al (1996) Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271(46):28890–28897PubMed Kimble RB et al (1996) Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271(46):28890–28897PubMed
38.
go back to reference Cenci S et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237PubMedCentralPubMed Cenci S et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237PubMedCentralPubMed
39.
go back to reference Lee SK et al (2006) T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21(11):1704–1712PubMed Lee SK et al (2006) T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21(11):1704–1712PubMed
40.
go back to reference Yamaza T et al (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One 3(7):e2615PubMedCentralPubMed Yamaza T et al (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One 3(7):e2615PubMedCentralPubMed
41.
go back to reference Roggia C et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98(24):13960–13965PubMed Roggia C et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98(24):13960–13965PubMed
42.
go back to reference Li JY et al (2011) Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 108(2):768–773PubMed Li JY et al (2011) Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 108(2):768–773PubMed
43.
go back to reference Grassi F et al (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA 104(38):15087–15092PubMed Grassi F et al (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA 104(38):15087–15092PubMed
44.
go back to reference Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848PubMed Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848PubMed
45.
go back to reference DeSelm CJ et al (2012) IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem 113(9):2895–2902PubMedCentralPubMed DeSelm CJ et al (2012) IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem 113(9):2895–2902PubMedCentralPubMed
46.
go back to reference Fox SW, Chambers TJ (2000) Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem Biophys Res Commun 276(3):868–872PubMed Fox SW, Chambers TJ (2000) Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem Biophys Res Commun 276(3):868–872PubMed
47.
go back to reference Kotake S et al (2005) IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol 35(11):3353–3363PubMed Kotake S et al (2005) IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol 35(11):3353–3363PubMed
48.
go back to reference Madyastha PR et al (2000) IFN-gamma enhances osteoclast generation in cultures of peripheral blood from osteopetrotic patients and normalizes superoxide production. J Interferon Cytokine Res 20(7):645–652PubMed Madyastha PR et al (2000) IFN-gamma enhances osteoclast generation in cultures of peripheral blood from osteopetrotic patients and normalizes superoxide production. J Interferon Cytokine Res 20(7):645–652PubMed
49.
go back to reference Sato K et al (1992) Prolonged decrease of serum calcium concentration by murine gamma-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res 52(2):444–449PubMed Sato K et al (1992) Prolonged decrease of serum calcium concentration by murine gamma-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res 52(2):444–449PubMed
50.
go back to reference Tohkin M et al (1994) Comparative study of inhibitory effects by murine interferon gamma and a new bisphosphonate (alendronate) in hypercalcemic, nude mice bearing human tumor (LJC-1-JCK). Cancer Immunol Immunother 39(3):155–160PubMed Tohkin M et al (1994) Comparative study of inhibitory effects by murine interferon gamma and a new bisphosphonate (alendronate) in hypercalcemic, nude mice bearing human tumor (LJC-1-JCK). Cancer Immunol Immunother 39(3):155–160PubMed
51.
go back to reference Arnoldi J, Gerdes J, Flad HD (1990) Immunohistologic assessment of cytokine production of infiltrating cells in various forms of leprosy. Am J Pathol 137(4):749–753PubMed Arnoldi J, Gerdes J, Flad HD (1990) Immunohistologic assessment of cytokine production of infiltrating cells in various forms of leprosy. Am J Pathol 137(4):749–753PubMed
52.
go back to reference Baker PJ et al (1999) CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 67(6):2804–2809PubMedCentralPubMed Baker PJ et al (1999) CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 67(6):2804–2809PubMedCentralPubMed
53.
go back to reference Cenci S et al (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 100(18):10405–10410PubMed Cenci S et al (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 100(18):10405–10410PubMed
54.
go back to reference Goodman GR et al (1999) Interferon-alpha, unlike interferon-gamma, does not cause bone loss in the rat. Bone 25(4):459–463PubMed Goodman GR et al (1999) Interferon-alpha, unlike interferon-gamma, does not cause bone loss in the rat. Bone 25(4):459–463PubMed
55.
go back to reference Key LL Jr et al (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332(24):1594–1599PubMed Key LL Jr et al (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332(24):1594–1599PubMed
56.
go back to reference Mann GN et al (1994) Interferon-gamma causes loss of bone volume in vivo and fails to ameliorate cyclosporin A-induced osteopenia. Endocrinology 135(3):1077–1083PubMed Mann GN et al (1994) Interferon-gamma causes loss of bone volume in vivo and fails to ameliorate cyclosporin A-induced osteopenia. Endocrinology 135(3):1077–1083PubMed
57.
go back to reference Rodriguiz RM, Key LL Jr, Ries WL (1993) Combination macrophage-colony stimulating factor and interferon-gamma administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr Res 33(4 Pt 1):384–389PubMed Rodriguiz RM, Key LL Jr, Ries WL (1993) Combination macrophage-colony stimulating factor and interferon-gamma administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr Res 33(4 Pt 1):384–389PubMed
58.
go back to reference Duque G et al (2011) Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 26(7):1472–1483PubMed Duque G et al (2011) Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 26(7):1472–1483PubMed
59.
go back to reference Gao Y et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122–132PubMedCentralPubMed Gao Y et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122–132PubMedCentralPubMed
60.
go back to reference Tyagi AM et al (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7(9):e44552PubMedCentralPubMed Tyagi AM et al (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7(9):e44552PubMedCentralPubMed
61.
go back to reference Goswami J et al (2009) A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol 39(10):2831–2839PubMedCentralPubMed Goswami J et al (2009) A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol 39(10):2831–2839PubMedCentralPubMed
62.
go back to reference Rivollier A et al (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104(13):4029–4037PubMed Rivollier A et al (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104(13):4029–4037PubMed
63.
go back to reference Speziani C et al (2007) Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur J Immunol 37(3):747–757PubMed Speziani C et al (2007) Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur J Immunol 37(3):747–757PubMed
64.
go back to reference Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508PubMed Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508PubMed
65.
go back to reference Alnaeeli M, Penninger JM, Teng YT (2006) Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J Immunol 177(5):3314–3326PubMed Alnaeeli M, Penninger JM, Teng YT (2006) Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J Immunol 177(5):3314–3326PubMed
67.
go back to reference Jacome-Galarza CE et al (2013) Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28:1203–1213PubMed Jacome-Galarza CE et al (2013) Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28:1203–1213PubMed
68.
go back to reference Mizoguchi T et al (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554PubMed Mizoguchi T et al (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554PubMed
69.
go back to reference Charles JF et al (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605PubMedCentralPubMed Charles JF et al (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605PubMedCentralPubMed
70.
go back to reference Grcevic D et al (2006) Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clin Exp Immunol 146(1):146–158PubMedCentralPubMed Grcevic D et al (2006) Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clin Exp Immunol 146(1):146–158PubMedCentralPubMed
71.
go back to reference Gupta N et al (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J Immunol 185(4):2261–2272PubMed Gupta N et al (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J Immunol 185(4):2261–2272PubMed
72.
go back to reference Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12(6):500–508PubMed Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12(6):500–508PubMed
73.
74.
go back to reference Grom AA et al (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142(3):292–296PubMed Grom AA et al (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142(3):292–296PubMed
75.
go back to reference Pridgeon C et al (2003) Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negative phenotype. Rheumatology (Oxford) 42(7):870–878 Pridgeon C et al (2003) Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negative phenotype. Rheumatology (Oxford) 42(7):870–878
76.
go back to reference Lo CK et al (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthritis Rheum 58(9):2700–2711PubMed Lo CK et al (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthritis Rheum 58(9):2700–2711PubMed
77.
go back to reference Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13(2):101–117PubMed Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13(2):101–117PubMed
79.
go back to reference Hu M et al (2011) Activated invariant NKT cells regulate osteoclast development and function. J Immunol 186(5):2910–2917PubMed Hu M et al (2011) Activated invariant NKT cells regulate osteoclast development and function. J Immunol 186(5):2910–2917PubMed
80.
go back to reference Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241PubMed Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241PubMed
81.
go back to reference Blin-Wakkach C et al (2004) Characterization of a novel bipotent hematopoietic progenitor population in normal and osteopetrotic mice. J Bone Miner Res 19(7):1137–1143PubMed Blin-Wakkach C et al (2004) Characterization of a novel bipotent hematopoietic progenitor population in normal and osteopetrotic mice. J Bone Miner Res 19(7):1137–1143PubMed
82.
go back to reference Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424PubMed Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424PubMed
83.
go back to reference Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323PubMed Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323PubMed
84.
go back to reference Yun TJ et al (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol 166(3):1482–1491PubMed Yun TJ et al (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol 166(3):1482–1491PubMed
85.
go back to reference Weitzmann MN et al (2000) B lymphocytes inhibit human osteoclastogenesis by secretion of TGFbeta. J Cell Biochem 78(2):318–324PubMed Weitzmann MN et al (2000) B lymphocytes inhibit human osteoclastogenesis by secretion of TGFbeta. J Cell Biochem 78(2):318–324PubMed
86.
go back to reference Li Y et al (2007) Ovariectomy-induced bone loss occurs independently of B cells. J Cell Biochem 100(6):1370–1375PubMed Li Y et al (2007) Ovariectomy-induced bone loss occurs independently of B cells. J Cell Biochem 100(6):1370–1375PubMed
87.
go back to reference Raggatt LJ et al (2013) Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model. Am J Pathol 182(5):1501–1508PubMed Raggatt LJ et al (2013) Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model. Am J Pathol 182(5):1501–1508PubMed
88.
go back to reference Nakken B et al (2011) B-cells and their targeting in rheumatoid arthritis—current concepts and future perspectives. Autoimmun Rev 11(1):28–34PubMed Nakken B et al (2011) B-cells and their targeting in rheumatoid arthritis—current concepts and future perspectives. Autoimmun Rev 11(1):28–34PubMed
89.
90.
go back to reference Loutis N, Bruckner P, Pataki A (1988) Induction of erosive arthritis in mice after passive transfer of anti-type II collagen antibodies. Agents Actions 25(3–4):352–359PubMed Loutis N, Bruckner P, Pataki A (1988) Induction of erosive arthritis in mice after passive transfer of anti-type II collagen antibodies. Agents Actions 25(3–4):352–359PubMed
91.
go back to reference Taylor PC, Plater-Zyberk C, Maini RN (1995) The role of the B cells in the adoptive transfer of collagen-induced arthritis from DBA/1 (H-2q) to SCID (H-2d) mice. Eur J Immunolo 25(3):763–769 Taylor PC, Plater-Zyberk C, Maini RN (1995) The role of the B cells in the adoptive transfer of collagen-induced arthritis from DBA/1 (H-2q) to SCID (H-2d) mice. Eur J Immunolo 25(3):763–769
92.
go back to reference Svensson L et al (1998) B cell–deficient mice do not develop type II collagen-induced arthritis (CIA). Clin Exp Immunol 111(3):521–526PubMedCentralPubMed Svensson L et al (1998) B cell–deficient mice do not develop type II collagen-induced arthritis (CIA). Clin Exp Immunol 111(3):521–526PubMedCentralPubMed
93.
go back to reference Edwards JC, Leandro MJ, Cambridge G (2002) B-lymphocyte depletion therapy in rheumatoid arthritis and other autoimmune disorders. Biochem Soc Trans 30(4):824–828PubMed Edwards JC, Leandro MJ, Cambridge G (2002) B-lymphocyte depletion therapy in rheumatoid arthritis and other autoimmune disorders. Biochem Soc Trans 30(4):824–828PubMed
94.
go back to reference Moore J et al (2004) A phase II study of rituximab in rheumatoid arthritis patients with recurrent disease following haematopoietic stem cell transplantation. Bone Marrow Transplant 34(3):241–247PubMed Moore J et al (2004) A phase II study of rituximab in rheumatoid arthritis patients with recurrent disease following haematopoietic stem cell transplantation. Bone Marrow Transplant 34(3):241–247PubMed
95.
go back to reference Horwood NJ, Urbaniak AM, Danks L (2012) Tec family kinases in inflammation and disease. Int Rev Immunol 31(2):87–103PubMed Horwood NJ, Urbaniak AM, Danks L (2012) Tec family kinases in inflammation and disease. Int Rev Immunol 31(2):87–103PubMed
96.
go back to reference Bedi B et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 109(12):E725–E733PubMed Bedi B et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 109(12):E725–E733PubMed
97.
go back to reference Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139PubMed Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139PubMed
98.
go back to reference Nakagawa H et al (1993) Influence of monocyte–macrophage lineage cells on alkaline phosphatase activity of developing osteoblasts derived from rat bone marrow stromal cells. Nippon Seikeigeka Gakkai Zasshi 67(5):480–489PubMed Nakagawa H et al (1993) Influence of monocyte–macrophage lineage cells on alkaline phosphatase activity of developing osteoblasts derived from rat bone marrow stromal cells. Nippon Seikeigeka Gakkai Zasshi 67(5):480–489PubMed
99.
go back to reference Rifas L et al (1989) Monokines produced by macrophages stimulate the growth of osteoblasts. Connect Tissue Res 23(2–3):163–178PubMed Rifas L et al (1989) Monokines produced by macrophages stimulate the growth of osteoblasts. Connect Tissue Res 23(2–3):163–178PubMed
100.
go back to reference Champagne CM et al (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30(1):26–31PubMed Champagne CM et al (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30(1):26–31PubMed
101.
go back to reference Hume DA, Loutit JF, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of bone and associated connective tissue. J Cell Sci 66:189–194PubMed Hume DA, Loutit JF, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of bone and associated connective tissue. J Cell Sci 66:189–194PubMed
102.
go back to reference Chang MK et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244PubMed Chang MK et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244PubMed
103.
go back to reference Alexander KA et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532PubMed Alexander KA et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532PubMed
104.
go back to reference Nicolaidou V et al (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871PubMedCentralPubMed Nicolaidou V et al (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871PubMedCentralPubMed
105.
go back to reference Guihard P et al (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30(4):762–772PubMed Guihard P et al (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30(4):762–772PubMed
106.
go back to reference Zarling JM et al (1986) Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 83(24):9739–9743PubMed Zarling JM et al (1986) Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 83(24):9739–9743PubMed
107.
go back to reference Walker EC et al (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120(2):582–592PubMedCentralPubMed Walker EC et al (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120(2):582–592PubMedCentralPubMed
108.
go back to reference Malik N et al (1995) Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol Cell Biol 15(5):2349–2358PubMedCentralPubMed Malik N et al (1995) Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol Cell Biol 15(5):2349–2358PubMedCentralPubMed
109.
go back to reference de Hooge AS et al (2002) Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. Am J Pathol 160(5):1733–1743PubMed de Hooge AS et al (2002) Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. Am J Pathol 160(5):1733–1743PubMed
110.
go back to reference Levy JB et al (1996) Activation of the JAK-STAT signal transduction pathway by oncostatin-M cultured human and mouse osteoblastic cells. Endocrinology 137(4):1159–1165PubMed Levy JB et al (1996) Activation of the JAK-STAT signal transduction pathway by oncostatin-M cultured human and mouse osteoblastic cells. Endocrinology 137(4):1159–1165PubMed
111.
go back to reference Bellido T et al (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138(9):3666–3676PubMed Bellido T et al (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138(9):3666–3676PubMed
112.
go back to reference Fujio Y et al (2004) Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573(1–3):202–206PubMed Fujio Y et al (2004) Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573(1–3):202–206PubMed
113.
go back to reference Katoh M (2007) STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer. Int J Mol Med 19(2):273–278PubMed Katoh M (2007) STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer. Int J Mol Med 19(2):273–278PubMed
114.
go back to reference Botelho FM, Edwards DR, Richards CD (1998) Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273(9):5211–5218PubMed Botelho FM, Edwards DR, Richards CD (1998) Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273(9):5211–5218PubMed
115.
go back to reference Jochum W et al (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6(9):980–984PubMed Jochum W et al (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6(9):980–984PubMed
116.
go back to reference Sabatakos G et al (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6(9):985–990PubMed Sabatakos G et al (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6(9):985–990PubMed
117.
go back to reference Sims NA, Walsh NC (2010) GP130 cytokines and bone remodelling in health and disease. BMB Rep 43(8):513–523PubMed Sims NA, Walsh NC (2010) GP130 cytokines and bone remodelling in health and disease. BMB Rep 43(8):513–523PubMed
118.
go back to reference Hamilton TA (2002) Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Bourke BL (ed) The macrophage, 2nd edn. Oxford University Press, Oxford Hamilton TA (2002) Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Bourke BL (ed) The macrophage, 2nd edn. Oxford University Press, Oxford
119.
go back to reference Porta C et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA 106(35):14978–14983PubMed Porta C et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA 106(35):14978–14983PubMed
120.
121.
go back to reference Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604PubMed Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604PubMed
122.
123.
go back to reference Fleetwood AJ et al (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252PubMed Fleetwood AJ et al (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252PubMed
124.
go back to reference Smith W, Feldmann M, Londei M (1998) Human macrophages induced in vitro by macrophage colony-stimulating factor are deficient in IL-12 production. Eur J Immunol 28(8):2498–2507PubMed Smith W, Feldmann M, Londei M (1998) Human macrophages induced in vitro by macrophage colony-stimulating factor are deficient in IL-12 production. Eur J Immunol 28(8):2498–2507PubMed
125.
go back to reference Tadokoro CE, de Almeida AI (2001) Bone marrow–derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens. Immunol Lett 77(1):31–38PubMed Tadokoro CE, de Almeida AI (2001) Bone marrow–derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens. Immunol Lett 77(1):31–38PubMed
126.
go back to reference Verreck FA et al (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79(2):285–293PubMed Verreck FA et al (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79(2):285–293PubMed
127.
go back to reference Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMed Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMed
128.
go back to reference Groh ME et al (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33(8):928–934PubMed Groh ME et al (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33(8):928–934PubMed
129.
go back to reference Francois M et al (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195PubMed Francois M et al (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195PubMed
130.
go back to reference Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453PubMedCentralPubMed Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453PubMedCentralPubMed
131.
go back to reference Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252PubMedCentralPubMed Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252PubMedCentralPubMed
132.
go back to reference Nemeth K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49PubMedCentralPubMed Nemeth K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49PubMedCentralPubMed
133.
go back to reference Jones S et al (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179(5):2824–2831PubMed Jones S et al (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179(5):2824–2831PubMed
134.
go back to reference Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMed Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMed
135.
go back to reference Kawaguchi H et al (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res 313:36–46PubMed Kawaguchi H et al (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res 313:36–46PubMed
136.
go back to reference Li L et al (2006) Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): a rose by any other name. Cytokine Growth Factor Rev 17(3):203–216PubMed Li L et al (2006) Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): a rose by any other name. Cytokine Growth Factor Rev 17(3):203–216PubMed
137.
go back to reference Xie C et al (2008) COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 43(6):1075–1083PubMedCentralPubMed Xie C et al (2008) COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 43(6):1075–1083PubMedCentralPubMed
138.
go back to reference Nagata T et al (1994) Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int 55(6):451–457PubMed Nagata T et al (1994) Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int 55(6):451–457PubMed
139.
go back to reference Ninomiya T et al (2011) Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650(1):396–402PubMed Ninomiya T et al (2011) Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650(1):396–402PubMed
140.
go back to reference Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20(6):521–526PubMed Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20(6):521–526PubMed
141.
go back to reference Repovic P, Benveniste EN (2002) Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci 22(13):5334–5343PubMed Repovic P, Benveniste EN (2002) Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci 22(13):5334–5343PubMed
142.
go back to reference Bystrom J et al (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112(10):4117–4127PubMed Bystrom J et al (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112(10):4117–4127PubMed
143.
go back to reference Rajakariar R et al (2008) Novel biphasic role for lymphocytes revealed during resolving inflammation. Blood 111(8):4184–4192PubMed Rajakariar R et al (2008) Novel biphasic role for lymphocytes revealed during resolving inflammation. Blood 111(8):4184–4192PubMed
144.
go back to reference Pettit AR et al (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43(6):976–982PubMed Pettit AR et al (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43(6):976–982PubMed
145.
go back to reference Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150PubMed Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150PubMed
146.
go back to reference Chen L et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886PubMedCentralPubMed Chen L et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886PubMedCentralPubMed
147.
go back to reference Xu W et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107(12):4930–4937PubMed Xu W et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107(12):4930–4937PubMed
148.
go back to reference Kawanaka N et al (2002) CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 46(10):2578–2586PubMed Kawanaka N et al (2002) CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 46(10):2578–2586PubMed
149.
go back to reference Rossol M et al (2012) The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 64(3):671–677PubMed Rossol M et al (2012) The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 64(3):671–677PubMed
150.
go back to reference Chiappetta N, Gruber B (2006) The role of mast cells in osteoporosis. Semin Arthritis Rheum 36(1):32–36PubMed Chiappetta N, Gruber B (2006) The role of mast cells in osteoporosis. Semin Arthritis Rheum 36(1):32–36PubMed
151.
go back to reference Seitz S et al (2013) Increased osteoblast and osteoclast indices in individuals with systemic mastocytosis. Osteoporos Int 24:2325–2334PubMed Seitz S et al (2013) Increased osteoblast and osteoclast indices in individuals with systemic mastocytosis. Osteoporos Int 24:2325–2334PubMed
152.
go back to reference Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19(1):73–88PubMed Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19(1):73–88PubMed
Metadata
Title
Cells of the Immune System Orchestrate Changes in Bone Cell Function
Authors
Sarah E. Wythe
Vicky Nicolaidou
Nicole J. Horwood
Publication date
01-01-2014
Publisher
Springer US
Published in
Calcified Tissue International / Issue 1/2014
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9764-0

Other articles of this Issue 1/2014

Calcified Tissue International 1/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.