Skip to main content
Top
Published in: Calcified Tissue International 2/2012

01-08-2012 | Review

Pathogenesis of Paget Disease of Bone

Authors: Stuart H. Ralston, Rob Layfield

Published in: Calcified Tissue International | Issue 2/2012

Login to get access

Abstract

Paget disease of bone (PDB) is a common disease characterized by focal areas of increased and disorganized bone turnover. Some patients are asymptomatic, whereas others develop complications such as pain, osteoarthritis, fracture, deformity, deafness, and nerve compression syndromes. PDB is primarily caused by dysregulation of osteoclast differentiation and function, and there is increasing evidence that this is due, in part, to genetic factors. One of the most important predisposing genes is SQSTM1, which harbors mutations that cause osteoclast activation in 5–20 % of PDB patients. Seven additional susceptibility loci for PDB have been identified by genomewide association studies on chromosomes 1p13, 7q33, 8q22, 10p13, 14q32, 15q24, and 18q21. Although the causal variants remain to be discovered, three of these loci contain CSF1, TNFRSF11A, and TM7SF4, genes that are known to play a critical role in osteoclast differentiation and function. Environmental factors are also important in the pathogenesis of PDB, as reflected by the fact that in many countries the disease has become less common and less severe over recent years. The most widely studied environmental trigger is paramyxovirus infection, but attempts to detect viral transcripts in tissues from patients with PDB have yielded mixed results. Although our understanding of the pathophysiology of PDB has advanced tremendously over the past 10 years, many questions remain unanswered, such as the mechanisms responsible for the focal nature of the disease and the recent changes in prevalence and severity.
Literature
1.
go back to reference Kanis JA (1992) Pathophysiology and treatment of Paget’s disease of bone. Martin Dunitz, London Kanis JA (1992) Pathophysiology and treatment of Paget’s disease of bone. Martin Dunitz, London
2.
go back to reference Meunier PJ, Coindre JM, Edouard CM, Arlot ME (1980) Bone histomorphometry in Paget’s disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum 23:1095–1103PubMedCrossRef Meunier PJ, Coindre JM, Edouard CM, Arlot ME (1980) Bone histomorphometry in Paget’s disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum 23:1095–1103PubMedCrossRef
3.
go back to reference Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S (2009) The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol 23:1668–1680PubMedCrossRef Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S (2009) The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol 23:1668–1680PubMedCrossRef
4.
go back to reference Albagha OME, Wani S, Visconti MR, Alonso N, Goodman K, Cundy T, Brandi ML, Chung PY, Dargie R, Devogelaer JP, Falchetti A, Fraser WD, Gennari L, Gianfrancesco F, Hooper MJ, Van Hul W, Isaia G, Nicholson GC, Nuti R, Del Pino MJ, Ratajczak T, Rea SL, Rendina D, Gonzalez-Sarmiento R, Di SM, Ward L, Walsh JP, Ralston SH (2011) Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet 43:685–689PubMedCrossRef Albagha OME, Wani S, Visconti MR, Alonso N, Goodman K, Cundy T, Brandi ML, Chung PY, Dargie R, Devogelaer JP, Falchetti A, Fraser WD, Gennari L, Gianfrancesco F, Hooper MJ, Van Hul W, Isaia G, Nicholson GC, Nuti R, Del Pino MJ, Ratajczak T, Rea SL, Rendina D, Gonzalez-Sarmiento R, Di SM, Ward L, Walsh JP, Ralston SH (2011) Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet 43:685–689PubMedCrossRef
6.
go back to reference Barker DJ (1984) The epidemiology of Paget’s disease of bone. Br Med Bull 40:396–400PubMed Barker DJ (1984) The epidemiology of Paget’s disease of bone. Br Med Bull 40:396–400PubMed
7.
go back to reference Detheridge FM, Guyer PB, Barker DJ (1982) European distribution of Paget’s disease of bone. Br Med J 285:1005–1008CrossRef Detheridge FM, Guyer PB, Barker DJ (1982) European distribution of Paget’s disease of bone. Br Med J 285:1005–1008CrossRef
8.
go back to reference van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C (2002) Incidence and natural history of Paget’s disease of bone in England and Wales. J Bone Miner Res 17:465–471PubMedCrossRef van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C (2002) Incidence and natural history of Paget’s disease of bone in England and Wales. J Bone Miner Res 17:465–471PubMedCrossRef
9.
go back to reference Takata S, Hashimoto J, Nakatsuka K, Yoshimura N, Yoh K, Ohno I, Yabe H, Abe S, Fukunaga M, Terada M, Zamma M, Ralston SH, Morii H, Yoshikawa H (2006) Guidelines for diagnosis and management of Paget’s disease of bone in Japan. J Bone Miner Metab 24:359–367PubMedCrossRef Takata S, Hashimoto J, Nakatsuka K, Yoshimura N, Yoh K, Ohno I, Yabe H, Abe S, Fukunaga M, Terada M, Zamma M, Ralston SH, Morii H, Yoshikawa H (2006) Guidelines for diagnosis and management of Paget’s disease of bone in Japan. J Bone Miner Metab 24:359–367PubMedCrossRef
10.
go back to reference Mays S (2010) Archaeological skeletons support a northwest European origin for Paget’s disease of bone. J Bone Miner Res 25:1839–1841PubMedCrossRef Mays S (2010) Archaeological skeletons support a northwest European origin for Paget’s disease of bone. J Bone Miner Res 25:1839–1841PubMedCrossRef
11.
go back to reference Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH (2005) Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 20:227–231PubMedCrossRef Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Meier C, Hooper MJ, Ralston SH (2005) Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res 20:227–231PubMedCrossRef
12.
go back to reference Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri MF, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi ML (2009) Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int 84:20–37PubMedCrossRef Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri MF, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi ML (2009) Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int 84:20–37PubMedCrossRef
13.
go back to reference Doyle T, Gunn J, Anderson G, Gill M, Cundy T (2002) Paget’s disease in New Zealand: evidence for declining prevalence. Bone 31:616–619PubMedCrossRef Doyle T, Gunn J, Anderson G, Gill M, Cundy T (2002) Paget’s disease in New Zealand: evidence for declining prevalence. Bone 31:616–619PubMedCrossRef
14.
go back to reference Poor G, Donath J, Fornet B, Cooper C (2006) Epidemiology of Paget’s disease in Europe: the prevalence is decreasing. J Bone Miner Res 21:1545–1549PubMedCrossRef Poor G, Donath J, Fornet B, Cooper C (2006) Epidemiology of Paget’s disease in Europe: the prevalence is decreasing. J Bone Miner Res 21:1545–1549PubMedCrossRef
15.
go back to reference Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T (2004) Paget’s disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int 75:358–364PubMedCrossRef Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T (2004) Paget’s disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int 75:358–364PubMedCrossRef
16.
go back to reference Gennari L, Gianfrancesco F, Di Stefano M, Rendina D, Merlotti D, Esposito T, Gallone S, Fusco P, Rainero I, Fenoglio P, Mancini M, Martini G, Bergui S, De Filippo G, Isaia G, Strazzullo P, Nuti R, Mossetti G (2010) SQSTM1 gene analysis and gene–environment interaction in Paget’s disease of bone. J Bone Miner Res 25:1375–1384PubMedCrossRef Gennari L, Gianfrancesco F, Di Stefano M, Rendina D, Merlotti D, Esposito T, Gallone S, Fusco P, Rainero I, Fenoglio P, Mancini M, Martini G, Bergui S, De Filippo G, Isaia G, Strazzullo P, Nuti R, Mossetti G (2010) SQSTM1 gene analysis and gene–environment interaction in Paget’s disease of bone. J Bone Miner Res 25:1375–1384PubMedCrossRef
17.
go back to reference Martini G, Gennari L, Merlotti D, Salvadori S, Franci MB, Campagna S, Avanzati A, De Paola V, Valleggi F, Nuti R (2007) Serum OPG and RANKL levels before and after intravenous bisphosphonate treatment in Paget’s disease of bone. Bone 40:457–463PubMedCrossRef Martini G, Gennari L, Merlotti D, Salvadori S, Franci MB, Campagna S, Avanzati A, De Paola V, Valleggi F, Nuti R (2007) Serum OPG and RANKL levels before and after intravenous bisphosphonate treatment in Paget’s disease of bone. Bone 40:457–463PubMedCrossRef
18.
go back to reference Gennari L, Di Stefano M, Merlotti D, Giordano N, Martini G, Tamone C, Zatteri R, De Lucchi R, Baldi C, Vattimo A, Capoccia S, Burroni L, Geraci S, De Paola V, Calabro A, Avanzati A, Isaia G, Nuti R (2005) Prevalence of Paget’s disease of bone in Italy. J Bone Miner Res 20:1845–1850PubMedCrossRef Gennari L, Di Stefano M, Merlotti D, Giordano N, Martini G, Tamone C, Zatteri R, De Lucchi R, Baldi C, Vattimo A, Capoccia S, Burroni L, Geraci S, De Paola V, Calabro A, Avanzati A, Isaia G, Nuti R (2005) Prevalence of Paget’s disease of bone in Italy. J Bone Miner Res 20:1845–1850PubMedCrossRef
19.
go back to reference Tiegs RD, Lohse CM, Wollan PC, Melton LJ (2000) Long-term trends in the incidence of Paget’s disease of bone. Bone 27:423–427PubMedCrossRef Tiegs RD, Lohse CM, Wollan PC, Melton LJ (2000) Long-term trends in the incidence of Paget’s disease of bone. Bone 27:423–427PubMedCrossRef
20.
go back to reference Siris ES (1994) Epidemiological aspects of Paget’s disease: family history and relationship to other medical conditions. Semin Arthritis Rheum 23:222–225PubMedCrossRef Siris ES (1994) Epidemiological aspects of Paget’s disease: family history and relationship to other medical conditions. Semin Arthritis Rheum 23:222–225PubMedCrossRef
21.
go back to reference Barker DJ, Gardner MJ (1974) Distribution of Paget’s diease in England, Wales and Scotland and a possible relationship with vitamin D deficiency in childhood. Br J Prev Soc Med 28:226–232PubMed Barker DJ, Gardner MJ (1974) Distribution of Paget’s diease in England, Wales and Scotland and a possible relationship with vitamin D deficiency in childhood. Br J Prev Soc Med 28:226–232PubMed
22.
go back to reference Lever JH (2002) Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31:434–436PubMedCrossRef Lever JH (2002) Paget’s disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 31:434–436PubMedCrossRef
23.
go back to reference Solomon LR (1979) Billiard-player’s fingers: an unusual case of Paget’s disease of bone. Br Med J 1:931PubMedCrossRef Solomon LR (1979) Billiard-player’s fingers: an unusual case of Paget’s disease of bone. Br Med J 1:931PubMedCrossRef
24.
25.
go back to reference Merlotti D, Gennari L, Galli B, Martini G, Calabro A, De Paola V, Ceccarelli E, Nardi P, Avanzati A, Nuti R (2005) Characteristics and familial aggregation of Paget’s disease of bone in Italy. J Bone Miner Res 20:1356–1364PubMedCrossRef Merlotti D, Gennari L, Galli B, Martini G, Calabro A, De Paola V, Ceccarelli E, Nardi P, Avanzati A, Nuti R (2005) Characteristics and familial aggregation of Paget’s disease of bone in Italy. J Bone Miner Res 20:1356–1364PubMedCrossRef
26.
go back to reference Lopez-Abente G, Morales-Piga A, Elena-Ibanez A, Rey–Rey JS, Corres-Gonzalez J (1997) Cattle, pets, and Paget’s disease of bone. Epidemiology 8:247–251PubMedCrossRef Lopez-Abente G, Morales-Piga A, Elena-Ibanez A, Rey–Rey JS, Corres-Gonzalez J (1997) Cattle, pets, and Paget’s disease of bone. Epidemiology 8:247–251PubMedCrossRef
27.
go back to reference Rebel A, Malkani K, Basle M, Bregeon C, Patezour A, Filmon R (1974) Ultrastructural characteristics of osteoclasts in Paget’s disease. Rev Rhum Mal Osteoartic 41:767–771PubMed Rebel A, Malkani K, Basle M, Bregeon C, Patezour A, Filmon R (1974) Ultrastructural characteristics of osteoclasts in Paget’s disease. Rev Rhum Mal Osteoartic 41:767–771PubMed
28.
go back to reference Mills BG, Singer FR, Weiner LP, Suffin SC, Stabile E, Holst P (1984) Evidence for both respiratory syncytial virus and measles virus antigens in the osteoclasts of patients with Paget’s disease of bone. Clin Orthop Relat Res 183:303–311PubMed Mills BG, Singer FR, Weiner LP, Suffin SC, Stabile E, Holst P (1984) Evidence for both respiratory syncytial virus and measles virus antigens in the osteoclasts of patients with Paget’s disease of bone. Clin Orthop Relat Res 183:303–311PubMed
29.
30.
go back to reference Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, Rima B (2007) Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget’s disease of bone. J Bone Miner Res 22:569–577PubMedCrossRef Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, Rima B (2007) Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget’s disease of bone. J Bone Miner Res 22:569–577PubMedCrossRef
31.
go back to reference Rima BK, Gassen U, Helfrich MH, Ralston SH (2002) The pro and con of measles virus in Paget’s disease: con. J Bone Miner Res 17:2290–2292PubMedCrossRef Rima BK, Gassen U, Helfrich MH, Ralston SH (2002) The pro and con of measles virus in Paget’s disease: con. J Bone Miner Res 17:2290–2292PubMedCrossRef
32.
go back to reference Friedrichs WE, Reddy SV, Singer FR, Roodman GD (2002) The pro and con of measles virus in Paget’s disease: pro. J Bone Miner Res 17:2293CrossRef Friedrichs WE, Reddy SV, Singer FR, Roodman GD (2002) The pro and con of measles virus in Paget’s disease: pro. J Bone Miner Res 17:2293CrossRef
33.
go back to reference Langston AL, Campbell MK, Fraser WD, MacLennan GS, Selby PL, Ralston SH (2010) Randomised trial of intensive bisphosphonate treatment versus symptomatic management in Paget’s disease of bone. J Bone Miner Res 25:20–31PubMedCrossRef Langston AL, Campbell MK, Fraser WD, MacLennan GS, Selby PL, Ralston SH (2010) Randomised trial of intensive bisphosphonate treatment versus symptomatic management in Paget’s disease of bone. J Bone Miner Res 25:20–31PubMedCrossRef
34.
go back to reference Langston AL, Campbell MK, Fraser WD, Maclennan G, Selby P, Ralston SH (2007) Clinical determinants of quality of life in Paget’s disease of bone. Calcif Tissue Int 80:1–9PubMedCrossRef Langston AL, Campbell MK, Fraser WD, Maclennan G, Selby P, Ralston SH (2007) Clinical determinants of quality of life in Paget’s disease of bone. Calcif Tissue Int 80:1–9PubMedCrossRef
35.
go back to reference Mills BG, Yabe H, Singer FR (1988) Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Miner Res 3:101–106PubMedCrossRef Mills BG, Yabe H, Singer FR (1988) Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Miner Res 3:101–106PubMedCrossRef
36.
go back to reference Bianco P, Silvestrini G, Ballanti P, Bonucci E (1992) Paramyxovirus-like nuclear inclusions identical to those of Paget’s disease of bone detected in giant cells of primary oxalosis. Virchows Arch Pathol Anat Histopathol 421:427–433CrossRef Bianco P, Silvestrini G, Ballanti P, Bonucci E (1992) Paramyxovirus-like nuclear inclusions identical to those of Paget’s disease of bone detected in giant cells of primary oxalosis. Virchows Arch Pathol Anat Histopathol 421:427–433CrossRef
37.
go back to reference Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, Fraser WD, Ooi CG, Selby PL, Crisp AJ, Wallace RG, Kahn S, Ralston SH (2000) A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res 15:2315–2329PubMedCrossRef Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, Fraser WD, Ooi CG, Selby PL, Crisp AJ, Wallace RG, Kahn S, Ralston SH (2000) A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res 15:2315–2329PubMedCrossRef
38.
go back to reference Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DM (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156:92–99PubMedCrossRef Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DM (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156:92–99PubMedCrossRef
39.
go back to reference Daroszewska A, van’t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K, Ralston SH (2011) A point mutation in the ubiquitin associated domain of SQSMT1 is sufficient to cause a Paget’s disease like disorder in mice. Hum Mol Genet 20:2734–2744PubMedCrossRef Daroszewska A, van’t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K, Ralston SH (2011) A point mutation in the ubiquitin associated domain of SQSMT1 is sufficient to cause a Paget’s disease like disorder in mice. Hum Mol Genet 20:2734–2744PubMedCrossRef
40.
go back to reference Neale SD, Smith R, Wass JA, Athanasou NA (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D3 and RANKL. Bone 27:409–416PubMedCrossRef Neale SD, Smith R, Wass JA, Athanasou NA (2000) Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D3 and RANKL. Bone 27:409–416PubMedCrossRef
41.
go back to reference Roodman GD, Kurihara N, Ohsaki Y, Kukita A, Hosking D, Demulder A, Smith JF, Singer FR (1992) Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest 89:46–52PubMedCrossRef Roodman GD, Kurihara N, Ohsaki Y, Kukita A, Hosking D, Demulder A, Smith JF, Singer FR (1992) Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest 89:46–52PubMedCrossRef
42.
go back to reference Natale VM, Filho WJ, Duarte AJ (1997) Cellular immunity aspects in elderly subjects with Paget’s disease of bone. Calcif Tissue Int 60:410–414PubMedCrossRef Natale VM, Filho WJ, Duarte AJ (1997) Cellular immunity aspects in elderly subjects with Paget’s disease of bone. Calcif Tissue Int 60:410–414PubMedCrossRef
43.
go back to reference Ralston SH, Hoey SA, Gallacher SJ, Adamson BB, Boyle IT (1994) Cytokine and growth factor expression in Paget’s disease: analysis by reverse-transcription/polymerase chain reaction. Br J Rheumatol 33:620–625PubMedCrossRef Ralston SH, Hoey SA, Gallacher SJ, Adamson BB, Boyle IT (1994) Cytokine and growth factor expression in Paget’s disease: analysis by reverse-transcription/polymerase chain reaction. Br J Rheumatol 33:620–625PubMedCrossRef
44.
go back to reference Nagy ZB, Gergely P, Donath J, Borgulya G, Csanad M, Poor G (2008) Gene expression profiling in Paget’s disease of bone: upregulation of interferon signaling pathways in pagetic monocytes and lymphocytes. J Bone Miner Res 23:253–259PubMedCrossRef Nagy ZB, Gergely P, Donath J, Borgulya G, Csanad M, Poor G (2008) Gene expression profiling in Paget’s disease of bone: upregulation of interferon signaling pathways in pagetic monocytes and lymphocytes. J Bone Miner Res 23:253–259PubMedCrossRef
45.
go back to reference Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749PubMedCrossRef Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, Yokochi T, Oda H, Nakamura K, Ida N, Wagner EF, Taniguchi T (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416:744–749PubMedCrossRef
46.
go back to reference Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275:31155–31161PubMedCrossRef Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275:31155–31161PubMedCrossRef
47.
go back to reference Sundaram K, Senn J, Yuvaraj S, Rao DS, Reddy SV (2009) FGF-2 stimulation of RANK ligand expression in Paget’s disease of bone. Mol Endocrinol 23:1445–1454PubMedCrossRef Sundaram K, Senn J, Yuvaraj S, Rao DS, Reddy SV (2009) FGF-2 stimulation of RANK ligand expression in Paget’s disease of bone. Mol Endocrinol 23:1445–1454PubMedCrossRef
48.
go back to reference Neale SD, Schulze E, Smith R, Athanasou NA (2002) The influence of serum cytokines and growth factors on osteoclast formation in Paget’s disease. QJM 95:233–240PubMedCrossRef Neale SD, Schulze E, Smith R, Athanasou NA (2002) The influence of serum cytokines and growth factors on osteoclast formation in Paget’s disease. QJM 95:233–240PubMedCrossRef
49.
go back to reference Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, Dunlop MG, Fraser WD, Hooper MJ, Isaia G, Nicholson GC, Del Pino MJ, Gonzalez-Sarmiento R, Di Stefano M, Tenesa A, Walsh JP, Ralston SH (2010) Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 42:520–524PubMedCrossRef Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, Dunlop MG, Fraser WD, Hooper MJ, Isaia G, Nicholson GC, Del Pino MJ, Gonzalez-Sarmiento R, Di Stefano M, Tenesa A, Walsh JP, Ralston SH (2010) Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 42:520–524PubMedCrossRef
50.
go back to reference McCarthy HS, Marshall MJ (2010) Dickkopf-1 as a potential therapeutic target in Paget’s disease of bone. Expert Opin Ther Targets 14:221–230PubMedCrossRef McCarthy HS, Marshall MJ (2010) Dickkopf-1 as a potential therapeutic target in Paget’s disease of bone. Expert Opin Ther Targets 14:221–230PubMedCrossRef
51.
go back to reference Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309PubMedCrossRef Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309PubMedCrossRef
52.
go back to reference Rea SL, Walsh JP, Ward L, Yip K, Ward BK, Kent GN, Steer JH, Xu J, Ratajczak T (2006) A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res 21:1136–1145PubMedCrossRef Rea SL, Walsh JP, Ward L, Yip K, Ward BK, Kent GN, Steer JH, Xu J, Ratajczak T (2006) A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res 21:1136–1145PubMedCrossRef
53.
go back to reference Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866PubMedCrossRef Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC (2008) Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 118:1858–1866PubMedCrossRef
54.
go back to reference Sundaram K, Shanmugarajan S, Rao DS, Reddy SV (2011) Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology 152:4180–4189PubMedCrossRef Sundaram K, Shanmugarajan S, Rao DS, Reddy SV (2011) Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology 152:4180–4189PubMedCrossRef
55.
go back to reference Demulder A, Takahashi S, Singer FR, Hosking DJ, Roodman GD (1993) Abnormalities in osteoclast precursors and marrow accessory cells in Paget’s disease. Endocrinology 133:1978–1982PubMedCrossRef Demulder A, Takahashi S, Singer FR, Hosking DJ, Roodman GD (1993) Abnormalities in osteoclast precursors and marrow accessory cells in Paget’s disease. Endocrinology 133:1978–1982PubMedCrossRef
56.
go back to reference Sun SG, Lau YS, Itonaga I, Sabokbar A, Athanasou NA (2006) Bone stromal cells in pagetic bone and Paget’s sarcoma express RANKL and support human osteoclast formation. J Pathol 209:114–120PubMedCrossRef Sun SG, Lau YS, Itonaga I, Sabokbar A, Athanasou NA (2006) Bone stromal cells in pagetic bone and Paget’s sarcoma express RANKL and support human osteoclast formation. J Pathol 209:114–120PubMedCrossRef
57.
go back to reference Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, Song S, Pitto RP, Cundy T, Cornish J, Reid IR (2007) Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J Bone Miner Res 22:298–309PubMedCrossRef Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, Song S, Pitto RP, Cundy T, Cornish J, Reid IR (2007) Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget’s disease of bone. J Bone Miner Res 22:298–309PubMedCrossRef
58.
go back to reference Morales-Piga AA, Rey–Rey JS, Corres-Gonzalez J, Garcia-Sagredo JM, Lopez-Abente G (1995) Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670PubMedCrossRef Morales-Piga AA, Rey–Rey JS, Corres-Gonzalez J, Garcia-Sagredo JM, Lopez-Abente G (1995) Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670PubMedCrossRef
59.
go back to reference Morissette J, Laurin N, Brown JP (2006) Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):38–44CrossRef Morissette J, Laurin N, Brown JP (2006) Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):38–44CrossRef
60.
go back to reference Eekhoff EW, Karperien M, Houtsma D, Zwinderman AH, Dragoiescu C, Kneppers AL, Papapoulos SE (2004) Familial Paget’s disease in the Netherlands: occurrence, identification of new mutations in the sequestosome 1 gene, and their clinical associations. Arthritis Rheum 50:1650–1654PubMedCrossRef Eekhoff EW, Karperien M, Houtsma D, Zwinderman AH, Dragoiescu C, Kneppers AL, Papapoulos SE (2004) Familial Paget’s disease in the Netherlands: occurrence, identification of new mutations in the sequestosome 1 gene, and their clinical associations. Arthritis Rheum 50:1650–1654PubMedCrossRef
61.
go back to reference Siris ES, Ottman R, Flaster E, Kelsey JL (1991) Familial aggregation of Paget’s disease of bone. J Bone Miner Res 6:495–500PubMedCrossRef Siris ES, Ottman R, Flaster E, Kelsey JL (1991) Familial aggregation of Paget’s disease of bone. J Bone Miner Res 6:495–500PubMedCrossRef
62.
go back to reference Sofaer JA, Holloway SM, Emery AE (1983) A family study of Paget’s disease of bone. J Epidemiol Community Health 37:226–231PubMedCrossRef Sofaer JA, Holloway SM, Emery AE (1983) A family study of Paget’s disease of bone. J Epidemiol Community Health 37:226–231PubMedCrossRef
63.
go back to reference Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, Nicholson GC, Wuyts W, Van Hul W, Ralston SH (2001) Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet 69:1055–1061PubMedCrossRef Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, Nicholson GC, Wuyts W, Van Hul W, Ralston SH (2001) Genomewide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet 69:1055–1061PubMedCrossRef
64.
go back to reference Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J (2001) Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 69:528–543PubMedCrossRef Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, Drapeau G, Verreault J, Raymond V, Morissette J (2001) Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet 69:528–543PubMedCrossRef
65.
go back to reference Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588PubMedCrossRef Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588PubMedCrossRef
66.
go back to reference Hocking LJ, Lucas GJA, Daroszewska A, Mangion J, Olavesen M, Nicholson GC, Ward L, Bennett ST, Wuyts W, Van Hul W, Ralston SH (2002) Domain specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–2739PubMedCrossRef Hocking LJ, Lucas GJA, Daroszewska A, Mangion J, Olavesen M, Nicholson GC, Ward L, Bennett ST, Wuyts W, Van Hul W, Ralston SH (2002) Domain specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–2739PubMedCrossRef
67.
go back to reference Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, Cundy T (2007) Delayed development of Paget’s disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res 22:411–415PubMedCrossRef Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, Cundy T (2007) Delayed development of Paget’s disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res 22:411–415PubMedCrossRef
68.
go back to reference Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277PubMedCrossRef Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, Searle MS, Layfield R (2006) Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int 78:271–277PubMedCrossRef
69.
70.
go back to reference Tan JM, Wong ES, Dawson VL, Dawson TM, Lim KL (2007) Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4:251–253 Tan JM, Wong ES, Dawson VL, Dawson TM, Lim KL (2007) Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4:251–253
71.
go back to reference Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145PubMedCrossRef Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145PubMedCrossRef
72.
go back to reference Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614PubMedCrossRef Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614PubMedCrossRef
73.
go back to reference Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, Ralston SH (2010) Mutations of SQSTM1 are associated with severity and clinical outcome in Paget’s disease of bone. J Bone Miner Res 25:2368–2373PubMedCrossRef Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, Ralston SH (2010) Mutations of SQSTM1 are associated with severity and clinical outcome in Paget’s disease of bone. J Bone Miner Res 25:2368–2373PubMedCrossRef
74.
go back to reference Beyens G, Van Hul E, Van Driessche K, Fransen E, Devogelaer J-P, Vanhoenacker F, Van Offel J, Verbruggen L, De Clerck L, Westhovens R, Van Hul W (2004) Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget’s disease. Calcif Tissue Int 75:144–152PubMedCrossRef Beyens G, Van Hul E, Van Driessche K, Fransen E, Devogelaer J-P, Vanhoenacker F, Van Offel J, Verbruggen L, De Clerck L, Westhovens R, Van Hul W (2004) Evaluation of the role of the SQSTM1 gene in sporadic Belgian patients with Paget’s disease. Calcif Tissue Int 75:144–152PubMedCrossRef
75.
go back to reference Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263PubMedCrossRef Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263PubMedCrossRef
76.
go back to reference Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444PubMedCrossRef Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444PubMedCrossRef
77.
go back to reference Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, Van Hul W, Marks SC Jr (2002) The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA 99:14303–14308PubMedCrossRef Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, Van Hul W, Marks SC Jr (2002) The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA 99:14303–14308PubMedCrossRef
78.
go back to reference Morohashi T, Corboz VA, Fleisch H, Cecchini MG, Felix R (1994) Macrophage colony-stimulating factor restores bone resorption in op/op bone in vitro in conjunction with parathyroid hormone or 1,25-dihydroxyvitamin D3. J Bone Miner Res 9:401–407PubMedCrossRef Morohashi T, Corboz VA, Fleisch H, Cecchini MG, Felix R (1994) Macrophage colony-stimulating factor restores bone resorption in op/op bone in vitro in conjunction with parathyroid hormone or 1,25-dihydroxyvitamin D3. J Bone Miner Res 9:401–407PubMedCrossRef
79.
go back to reference Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571PubMedCrossRef Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571PubMedCrossRef
80.
go back to reference Wallace RG, Barr RJ, Osterberg PH, Mollan RA (1989) Familial expansile osteolysis. Clin Orthop 248:265–277PubMed Wallace RG, Barr RJ, Osterberg PH, Mollan RA (1989) Familial expansile osteolysis. Clin Orthop 248:265–277PubMed
81.
go back to reference Hughes AE, Shearman AM, Weber JL, Barr RJ, Wallace RG, Osterberg PH, Nevin NC, Mollan RA (1994) Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet 3:359–361PubMedCrossRef Hughes AE, Shearman AM, Weber JL, Barr RJ, Wallace RG, Osterberg PH, Nevin NC, Mollan RA (1994) Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet 3:359–361PubMedCrossRef
82.
go back to reference Haslam SI, Van Hul W, Morales-Piga A, Balemans W, San Millan JL, Nakatsuka K, Willems P, Haites NE, Ralston SH (1998) Paget’s disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res 13:911–917PubMedCrossRef Haslam SI, Van Hul W, Morales-Piga A, Balemans W, San Millan JL, Nakatsuka K, Willems P, Haites NE, Ralston SH (1998) Paget’s disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res 13:911–917PubMedCrossRef
83.
go back to reference Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, Van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48PubMedCrossRef Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, Van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48PubMedCrossRef
84.
go back to reference Nakatsuka K, Nishizawa Y, Ralston SH (2003) Phenotypic characterization of early onset Paget’s disease of bone caused by a 27 bp duplication in the TNFRSF11A gene. J Bone Miner Res 18:1381–1385PubMedCrossRef Nakatsuka K, Nishizawa Y, Ralston SH (2003) Phenotypic characterization of early onset Paget’s disease of bone caused by a 27 bp duplication in the TNFRSF11A gene. J Bone Miner Res 18:1381–1385PubMedCrossRef
85.
go back to reference Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–29PubMedCrossRef Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–29PubMedCrossRef
86.
go back to reference Whyte MP, Mills BG, Reinus WR, Podgornik MN, Roodman GD, Gannon FH, Eddy MC, McAlister WH (2000) Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 15:2330–2344PubMedCrossRef Whyte MP, Mills BG, Reinus WR, Podgornik MN, Roodman GD, Gannon FH, Eddy MC, McAlister WH (2000) Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 15:2330–2344PubMedCrossRef
87.
go back to reference Crockett JC, Mellis DJ, Shennan KI, Duthie A, Greenhorn J, Scott DI, Ralston SH, Helfrich MH, Rogers MJ (2011) Signal peptide mutations in rank prevent downstream activation of NFkappaB. J Bone Miner Res 26:1926–1938PubMedCrossRef Crockett JC, Mellis DJ, Shennan KI, Duthie A, Greenhorn J, Scott DI, Ralston SH, Helfrich MH, Rogers MJ (2011) Signal peptide mutations in rank prevent downstream activation of NFkappaB. J Bone Miner Res 26:1926–1938PubMedCrossRef
88.
go back to reference Sparks AB, Peterson SN, Bell C, Loftus BJ, Hocking L, Cahill DP, Frassica FJ, Streeten EA, Levine MA, Fraser CM, Adams MD, Broder S, Venter JC, Kinzler KW, Vogelstein B, Ralston SH (2001) Mutation screening of the TNFRSF11A gene encoding receptor activator of NF kappa B (RANK) in familial and sporadic Paget’s disease of bone and osteosarcoma. Calcif Tissue Int 68:151–155PubMedCrossRef Sparks AB, Peterson SN, Bell C, Loftus BJ, Hocking L, Cahill DP, Frassica FJ, Streeten EA, Levine MA, Fraser CM, Adams MD, Broder S, Venter JC, Kinzler KW, Vogelstein B, Ralston SH (2001) Mutation screening of the TNFRSF11A gene encoding receptor activator of NF kappa B (RANK) in familial and sporadic Paget’s disease of bone and osteosarcoma. Calcif Tissue Int 68:151–155PubMedCrossRef
89.
go back to reference Wuyts W, Van Wesenbeeck L, Morales-Piga A, Ralston S, Hocking L, Vanhoenacker F, Westhovens R, Verbruggen L, Anderson D, Hughes A, Van Hul W (2001) Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone 28:104–107PubMedCrossRef Wuyts W, Van Wesenbeeck L, Morales-Piga A, Ralston S, Hocking L, Vanhoenacker F, Westhovens R, Verbruggen L, Anderson D, Hughes A, Van Hul W (2001) Evaluation of the role of RANK and OPG genes in Paget’s disease of bone. Bone 28:104–107PubMedCrossRef
90.
go back to reference Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, Daroszewska A, Fransen E, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Karperien M, Papapoulos S, Ralston SH, Devogelaer JP, Van Hul W (2010) Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res 25:2316–2329CrossRef Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, Daroszewska A, Fransen E, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Karperien M, Papapoulos S, Ralston SH, Devogelaer JP, Van Hul W (2010) Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res 25:2316–2329CrossRef
91.
go back to reference Gianfrancesco F, Rendina D, Di Stefano M, Mingione A, Esposito T, Merlotti D, Gallone S, Magliocca S, Goode A, Formicola D, Morello G, Layfield R, Frattini A, De Filippo G, Nuti R, Searle M, Strazzullo P, Isaia G, Mossetti G, Gennari L (2011) A non-synonymous TNFRSF11A variation increases NFkB activity and the severity of Paget’s disease. J Bone Miner Res 27:443–452CrossRef Gianfrancesco F, Rendina D, Di Stefano M, Mingione A, Esposito T, Merlotti D, Gallone S, Magliocca S, Goode A, Formicola D, Morello G, Layfield R, Frattini A, De Filippo G, Nuti R, Searle M, Strazzullo P, Isaia G, Mossetti G, Gennari L (2011) A non-synonymous TNFRSF11A variation increases NFkB activity and the severity of Paget’s disease. J Bone Miner Res 27:443–452CrossRef
92.
go back to reference Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443PubMedCrossRef Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443PubMedCrossRef
93.
go back to reference Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233PubMedCrossRef Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233PubMedCrossRef
94.
go back to reference Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079PubMedCrossRef Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Heon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079PubMedCrossRef
95.
go back to reference yala-Lugo RM, Pawar H, Reed DM, Lichter PR, Moroi SE, Page M, Eadie J, Azocar V, Maul E, Ntim-Amponsah C, Bromley W, Obeng-Nyarkoh E, Johnson AT, Kijek TG, Downs CA, Johnson JM, Perez-Grossmann RA, Guevara-Fujita ML, Fujita R, Wallace MR, Richards JE (2007) Variation in optineurin (OPTN) allele frequencies between and within populations. Mol Vis 13:151–163 yala-Lugo RM, Pawar H, Reed DM, Lichter PR, Moroi SE, Page M, Eadie J, Azocar V, Maul E, Ntim-Amponsah C, Bromley W, Obeng-Nyarkoh E, Johnson AT, Kijek TG, Downs CA, Johnson JM, Perez-Grossmann RA, Guevara-Fujita ML, Fujita R, Wallace MR, Richards JE (2007) Variation in optineurin (OPTN) allele frequencies between and within populations. Mol Vis 13:151–163
96.
go back to reference Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226PubMedCrossRef Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, Komure O, Matsuura S, Kobatake K, Morimoto N, Abe K, Suzuki N, Aoki M, Kawata A, Hirai T, Kato T, Ogasawara K, Hirano A, Takumi T, Kusaka H, Hagiwara K, Kaji R, Kawakami H (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226PubMedCrossRef
97.
go back to reference Millecamps S, Boillee S, Chabrol E, Camu W, Cazeneuve C, Salachas F, Pradat PF, nel-Brunaud V, Vandenberghe N, Corcia P, Le Forestier N, Lacomblez L, Bruneteau G, Seilhean D, Brice A, Feingold J, Meininger V, Leguern E (2011) Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol Aging 32(3):557.e11–3 Millecamps S, Boillee S, Chabrol E, Camu W, Cazeneuve C, Salachas F, Pradat PF, nel-Brunaud V, Vandenberghe N, Corcia P, Le Forestier N, Lacomblez L, Bruneteau G, Seilhean D, Brice A, Feingold J, Meininger V, Leguern E (2011) Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol Aging 32(3):557.e11–3
98.
go back to reference Nagabhushana A, Bansal M, Swarup G (2011) Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 6:e17477PubMedCrossRef Nagabhushana A, Bansal M, Swarup G (2011) Optineurin is required for CYLD-dependent inhibition of TNFalpha-induced NF-kappaB activation. PLoS ONE 6:e17477PubMedCrossRef
99.
go back to reference Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 347:175–184PubMedCrossRef Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 347:175–184PubMedCrossRef
100.
go back to reference Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, Kanis J, Seidel J, Tau C, Tuysuz B, Yuksel B, Love D, Cundy T (2003) Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res 18:2095–2104PubMedCrossRef Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, Kanis J, Seidel J, Tau C, Tuysuz B, Yuksel B, Love D, Cundy T (2003) Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res 18:2095–2104PubMedCrossRef
101.
go back to reference Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, Xu J, Grey A, Cornish J, Naot D (2006) Deletion of aspartate 182 in OPG causes juvenile Paget’s disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res 21:438–445PubMedCrossRef Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, Xu J, Grey A, Cornish J, Naot D (2006) Deletion of aspartate 182 in OPG causes juvenile Paget’s disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res 21:438–445PubMedCrossRef
102.
go back to reference Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl BL, Stone MD, Cundy T, Nicholson GC, Fraser WD, Ralston SH (2004) Susceptibility to Paget’s disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 19:1506–1511PubMedCrossRef Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl BL, Stone MD, Cundy T, Nicholson GC, Fraser WD, Ralston SH (2004) Susceptibility to Paget’s disease of bone is influenced by a common polymorphic variant of osteoprotegerin. J Bone Miner Res 19:1506–1511PubMedCrossRef
103.
go back to reference Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, Zmierczak HG, Westhovens R, Van Offel J, Ralston SH, Devogelaer JP, Van Hul W (2007) Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res 22:1062–1071PubMedCrossRef Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, Zmierczak HG, Westhovens R, Van Offel J, Ralston SH, Devogelaer JP, Van Hul W (2007) Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J Bone Miner Res 22:1062–1071PubMedCrossRef
104.
go back to reference Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, Hurt E (1997) Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205 kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell 8:2017–2038PubMed Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, Hurt E (1997) Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205 kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell 8:2017–2038PubMed
105.
106.
go back to reference Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381PubMedCrossRef Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381PubMedCrossRef
107.
go back to reference Kimonis VE, Mehta SG, Fulchiero EC, Thomasova D, Pasquali M, Boycott K, Neilan EG, Kartashov A, Forman MS, Tucker S, Kimonis K, Mumm S, Whyte MP, Smith CD, Watts GD (2008) Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A 146:745–757 Kimonis VE, Mehta SG, Fulchiero EC, Thomasova D, Pasquali M, Boycott K, Neilan EG, Kartashov A, Forman MS, Tucker S, Kimonis K, Mumm S, Whyte MP, Smith CD, Watts GD (2008) Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A 146:745–757
108.
go back to reference Kimonis VE, Kovach MJ, Waggoner B, Leal S, Salam A, Rimer L, Davis K, Khardori R, Gelber D (2000) Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med 2:232–241PubMedCrossRef Kimonis VE, Kovach MJ, Waggoner B, Leal S, Salam A, Rimer L, Davis K, Khardori R, Gelber D (2000) Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med 2:232–241PubMedCrossRef
109.
go back to reference Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123PubMedCrossRef Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123PubMedCrossRef
110.
go back to reference Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84PubMedCrossRef Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84PubMedCrossRef
111.
go back to reference Hartmann-Petersen R, Wallace M, Hofmann K, Koch G, Johnsen AH, Hendil KB, Gordon C (2004) The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol 14:824–828PubMedCrossRef Hartmann-Petersen R, Wallace M, Hofmann K, Koch G, Johnsen AH, Hendil KB, Gordon C (2004) The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol 14:824–828PubMedCrossRef
112.
go back to reference Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004) AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem 279:45676–45684PubMedCrossRef Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004) AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem 279:45676–45684PubMedCrossRef
113.
go back to reference Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217–227PubMedCrossRef Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217–227PubMedCrossRef
114.
go back to reference Weihl CC, Miller SE, Hanson PI, Pestronk A (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16:919–928PubMedCrossRef Weihl CC, Miller SE, Hanson PI, Pestronk A (2007) Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum Mol Genet 16:919–928PubMedCrossRef
115.
go back to reference Muller JM, Deinhardt K, Rosewell I, Warren G, Shima DT (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354:459–465PubMedCrossRef Muller JM, Deinhardt K, Rosewell I, Warren G, Shima DT (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354:459–465PubMedCrossRef
116.
go back to reference Weihl CC, Dalal S, Pestronk A, Hanson PI (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15:189–199PubMedCrossRef Weihl CC, Dalal S, Pestronk A, Hanson PI (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15:189–199PubMedCrossRef
117.
go back to reference Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su H, Tanaja J, Dec E, Wallace DC, Mukherjee J, Caiozzo V, Warman M, Kimonis VE (2010) VCP associated inclusion body myopathy and Paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS ONE 5:e13183PubMedCrossRef Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su H, Tanaja J, Dec E, Wallace DC, Mukherjee J, Caiozzo V, Warman M, Kimonis VE (2010) VCP associated inclusion body myopathy and Paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS ONE 5:e13183PubMedCrossRef
118.
go back to reference Ritz D, Vuk M, Kirchner P, Bug M, Schutz S, Hayer A, Bremer S, Lusk C, Baloh RH, Lee H, Glatter T, Gstaiger M, Aebersold R, Weihl CC, Meyer H (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13:1116–1123PubMedCrossRef Ritz D, Vuk M, Kirchner P, Bug M, Schutz S, Hayer A, Bremer S, Lusk C, Baloh RH, Lee H, Glatter T, Gstaiger M, Aebersold R, Weihl CC, Meyer H (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13:1116–1123PubMedCrossRef
119.
go back to reference Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Watts GD, Ralston SH, Kimonis VE (2006) Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget’s disease of bone. Bone 38:280–285PubMedCrossRef Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, Walsh JP, Fraser WD, Watts GD, Ralston SH, Kimonis VE (2006) Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget’s disease of bone. Bone 38:280–285PubMedCrossRef
120.
go back to reference Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Devogelaer JP, Van Hul W (2011) Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget’s disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab 103:287–292PubMedCrossRef Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, Verbruggen L, Van Offel J, Goemaere S, Zmierczak HG, Westhovens R, Devogelaer JP, Van Hul W (2011) Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget’s disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab 103:287–292PubMedCrossRef
121.
122.
go back to reference Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney JD, Leach RJ, Seton M, Hansen MF (2009) Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget’s disease of bone. J Bone Miner Res 24:484–494PubMedCrossRef Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney JD, Leach RJ, Seton M, Hansen MF (2009) Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget’s disease of bone. J Bone Miner Res 24:484–494PubMedCrossRef
123.
go back to reference Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, Wattie D, Cundy T, Cornish J, Reid IR (2009) Absence of somatic SQSTM1 mutations in Paget’s disease of bone. J Clin Endocrinol Metab 94:691–694PubMedCrossRef Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, Wattie D, Cundy T, Cornish J, Reid IR (2009) Absence of somatic SQSTM1 mutations in Paget’s disease of bone. J Clin Endocrinol Metab 94:691–694PubMedCrossRef
124.
go back to reference Goode A, Layfield R (2010) Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol 63:199–203PubMedCrossRef Goode A, Layfield R (2010) Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol 63:199–203PubMedCrossRef
125.
go back to reference Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435PubMedCrossRef Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435PubMedCrossRef
126.
go back to reference Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA 105:20567–20574PubMedCrossRef Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA 105:20567–20574PubMedCrossRef
127.
go back to reference Whitehouse CA, Waters S, Marchbank K, Horner A, McGowan NW, Jovanovic JV, Xavier GM, Kashima TG, Cobourne MT, Richards GO, Sharpe PT, Skerry TM, Grigoriadis AE, Solomon E (2010) Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci USA 107:12913–12918PubMedCrossRef Whitehouse CA, Waters S, Marchbank K, Horner A, McGowan NW, Jovanovic JV, Xavier GM, Kashima TG, Cobourne MT, Richards GO, Sharpe PT, Skerry TM, Grigoriadis AE, Solomon E (2010) Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci USA 107:12913–12918PubMedCrossRef
128.
go back to reference Kirkin V, Lamark T, Johansen T, Dikic I (2009) NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732–733PubMedCrossRef Kirkin V, Lamark T, Johansen T, Dikic I (2009) NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5:732–733PubMedCrossRef
129.
go back to reference Collet C, Michou L, Audran M, Chasseigneaux S, Hilliquin P, Bardin T, Lemaire I, Cornelis F, Launay JM, Orcel P, Laplanche JL (2007) Paget’s disease of bone in the French population: novel SQSTM1 mutations, functional analysis, and genotype–phenotype correlations. J Bone Miner Res 22:310–317PubMedCrossRef Collet C, Michou L, Audran M, Chasseigneaux S, Hilliquin P, Bardin T, Lemaire I, Cornelis F, Launay JM, Orcel P, Laplanche JL (2007) Paget’s disease of bone in the French population: novel SQSTM1 mutations, functional analysis, and genotype–phenotype correlations. J Bone Miner Res 22:310–317PubMedCrossRef
130.
go back to reference Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187:875–888PubMedCrossRef Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187:875–888PubMedCrossRef
131.
go back to reference DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21:966–974PubMedCrossRef DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21:966–974PubMedCrossRef
132.
133.
go back to reference Mills BG, Frausto A, Singer FR, Ohsaki Y, Demulder A, Roodman GD (1994) Multinucleated cells formed in vitro from Paget’s bone marrow express viral antigens. Bone 15:443–448PubMedCrossRef Mills BG, Frausto A, Singer FR, Ohsaki Y, Demulder A, Roodman GD (1994) Multinucleated cells formed in vitro from Paget’s bone marrow express viral antigens. Bone 15:443–448PubMedCrossRef
134.
go back to reference Rebel A, Basle M, Pouplard A, Malkani K, Filmon R, Lepatezour A (1980) Bone tissue in Paget’s disease of bone. Ultrastructure and immunocytology. Arthritis Rheum 23:1104–1114PubMedCrossRef Rebel A, Basle M, Pouplard A, Malkani K, Filmon R, Lepatezour A (1980) Bone tissue in Paget’s disease of bone. Ultrastructure and immunocytology. Arthritis Rheum 23:1104–1114PubMedCrossRef
135.
go back to reference Mills BG, Singer FR, Weiner LP, Holst PA (1981) Immunohistological demonstration of respiratory syncytial virus antigens in Paget’s disease of bone. Proc Natl Acad Sci USA 78:1209–1212PubMedCrossRef Mills BG, Singer FR, Weiner LP, Holst PA (1981) Immunohistological demonstration of respiratory syncytial virus antigens in Paget’s disease of bone. Proc Natl Acad Sci USA 78:1209–1212PubMedCrossRef
136.
go back to reference Khan SA, Brennan P, Newman J, Gray RE, McCloskey EV, Kanis JA (1996) Paget’s disease of bone and unvaccinated dogs. Bone 19:47–50PubMedCrossRef Khan SA, Brennan P, Newman J, Gray RE, McCloskey EV, Kanis JA (1996) Paget’s disease of bone and unvaccinated dogs. Bone 19:47–50PubMedCrossRef
137.
go back to reference Siris ES, Kelsey JL, Flaster E, Parker S (1990) Paget’s disease of bone and previous pet ownership in the United States: dogs exonerated. Int J Epidemiol 19:455–458PubMedCrossRef Siris ES, Kelsey JL, Flaster E, Parker S (1990) Paget’s disease of bone and previous pet ownership in the United States: dogs exonerated. Int J Epidemiol 19:455–458PubMedCrossRef
138.
go back to reference Gordon MT, Anderson DC, Sharpe PT (1991) Canine distemper virus localised in bone cells of patients with Paget’s disease. Bone 12:195–201PubMedCrossRef Gordon MT, Anderson DC, Sharpe PT (1991) Canine distemper virus localised in bone cells of patients with Paget’s disease. Bone 12:195–201PubMedCrossRef
139.
go back to reference Mee AP, Dixon JA, Hoyland JA, Davies M, Selby PL, Mawer EB (1998) Detection of canine distemper virus in 100 % of Paget’s disease samples by in situ-reverse transcriptase polymerase chain reaction. Bone 23:171–175PubMedCrossRef Mee AP, Dixon JA, Hoyland JA, Davies M, Selby PL, Mawer EB (1998) Detection of canine distemper virus in 100 % of Paget’s disease samples by in situ-reverse transcriptase polymerase chain reaction. Bone 23:171–175PubMedCrossRef
140.
go back to reference Gordon MT, Mee AP, Anderson DC, Sharpe PT (1992) Canine distemper transcripts sequenced from pagetic bone. Bone Miner 19:159–174PubMedCrossRef Gordon MT, Mee AP, Anderson DC, Sharpe PT (1992) Canine distemper transcripts sequenced from pagetic bone. Bone Miner 19:159–174PubMedCrossRef
141.
go back to reference Basle MF, Fournier JG, Rozenblatt S, Rebel A, Bouteille M (1986) Measles virus RNA detected in Paget’s disease bone tissue by in situ hybridization. J Gen Virol 67(Pt 5):907–913PubMedCrossRef Basle MF, Fournier JG, Rozenblatt S, Rebel A, Bouteille M (1986) Measles virus RNA detected in Paget’s disease bone tissue by in situ hybridization. J Gen Virol 67(Pt 5):907–913PubMedCrossRef
142.
go back to reference Reddy SV, Menaa C, Singer FR, Cundy T, Cornish J, Whyte MP, Roodman GD (1999) Measles virus nucleocapsid transcript expression is not restricted to the osteoclast lineage in patients with Paget’s disease of bone. Exp Hematol 27:1528–1532PubMedCrossRef Reddy SV, Menaa C, Singer FR, Cundy T, Cornish J, Whyte MP, Roodman GD (1999) Measles virus nucleocapsid transcript expression is not restricted to the osteoclast lineage in patients with Paget’s disease of bone. Exp Hematol 27:1528–1532PubMedCrossRef
143.
go back to reference Ralston SH, DiGiovine FS, Gallacher SJ, Boyle IT, Duff GW (1991) Failure to detect paramyxovirus sequences in Paget’s disease of bone using the polymerase chain reaction. J Bone Miner Res 6:1243–1248PubMedCrossRef Ralston SH, DiGiovine FS, Gallacher SJ, Boyle IT, Duff GW (1991) Failure to detect paramyxovirus sequences in Paget’s disease of bone using the polymerase chain reaction. J Bone Miner Res 6:1243–1248PubMedCrossRef
144.
go back to reference Birch MA, Taylor W, Fraser WD, Ralston SH, Hart CA, Gallagher JA (1994) Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J Bone Miner Res 9:11–16PubMedCrossRef Birch MA, Taylor W, Fraser WD, Ralston SH, Hart CA, Gallagher JA (1994) Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J Bone Miner Res 9:11–16PubMedCrossRef
145.
go back to reference Ooi CG, Walsh CA, Gallagher JA, Fraser WD (2000) Absence of measles virus and canine distemper virus transcripts in long-term bone marrow cultures from patients with Paget’s disease of bone. Bone 27:417–421PubMedCrossRef Ooi CG, Walsh CA, Gallagher JA, Fraser WD (2000) Absence of measles virus and canine distemper virus transcripts in long-term bone marrow cultures from patients with Paget’s disease of bone. Bone 27:417–421PubMedCrossRef
146.
go back to reference Nuovo MA, Nuovo GJ, MacConnell P, Forde A, Steiner GC (1992) In situ analysis of Paget’s disease of bone for measles-specific PCR-amplified cDNA. Diagn Mol Pathol 1:256–265PubMed Nuovo MA, Nuovo GJ, MacConnell P, Forde A, Steiner GC (1992) In situ analysis of Paget’s disease of bone for measles-specific PCR-amplified cDNA. Diagn Mol Pathol 1:256–265PubMed
147.
go back to reference Friedrichs WE, Reddy SV, Bruder JM, Cundy T, Cornish J, Singer FR, Roodman GD (2002) Sequence analysis of measles virus nucleocapsid transcripts in patients with Paget’s disease. J Bone Miner Res 17:145–151PubMedCrossRef Friedrichs WE, Reddy SV, Bruder JM, Cundy T, Cornish J, Singer FR, Roodman GD (2002) Sequence analysis of measles virus nucleocapsid transcripts in patients with Paget’s disease. J Bone Miner Res 17:145–151PubMedCrossRef
148.
go back to reference Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, Cundy T, Cornish J, Reid IR, Naot D (2008) Failure to detect measles virus RNA in bone cells from patients with Paget’s disease. J Clin Endocrinol Metab 93:1398–1401PubMedCrossRef Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, Cundy T, Cornish J, Reid IR, Naot D (2008) Failure to detect measles virus RNA in bone cells from patients with Paget’s disease. J Clin Endocrinol Metab 93:1398–1401PubMedCrossRef
149.
go back to reference Mee AP, May C, Bennett D, Sharpe PT (1995) Generation of multinucleated osteoclast-like cells from canine bone marrow: effects of canine distemper virus. Bone 17:47–55PubMedCrossRef Mee AP, May C, Bennett D, Sharpe PT (1995) Generation of multinucleated osteoclast-like cells from canine bone marrow: effects of canine distemper virus. Bone 17:47–55PubMedCrossRef
150.
go back to reference Reddy SV, Kurihara N, Menaa C, Landucci G, Forthal D, Koop BA, Windle JJ, Roodman GD (2001) Osteoclasts formed by measles virus-infected osteoclast precursors from hCD46 transgenic mice express characteristics of pagetic osteoclasts. Endocrinology 142:2898–2905PubMedCrossRef Reddy SV, Kurihara N, Menaa C, Landucci G, Forthal D, Koop BA, Windle JJ, Roodman GD (2001) Osteoclasts formed by measles virus-infected osteoclast precursors from hCD46 transgenic mice express characteristics of pagetic osteoclasts. Endocrinology 142:2898–2905PubMedCrossRef
151.
go back to reference Kurihara N, Reddy SV, Menaa C, Anderson D, Roodman GD (2000) Osteoclasts expressing the measles virus nucleocapsid gene display a pagetic phenotype. J Clin Invest 105:607–614PubMedCrossRef Kurihara N, Reddy SV, Menaa C, Anderson D, Roodman GD (2000) Osteoclasts expressing the measles virus nucleocapsid gene display a pagetic phenotype. J Clin Invest 105:607–614PubMedCrossRef
152.
go back to reference Kurihara N, Hiruma Y, Yamana K, Michou L, Rousseau C, Morissette J, Galson DL, Teramachi J, Zhou H, Dempster DW, Windle JJ, Brown JP, Roodman GD (2011) Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62(P392L) mutation to Paget’s disease. Cell Metab 13:23–34PubMedCrossRef Kurihara N, Hiruma Y, Yamana K, Michou L, Rousseau C, Morissette J, Galson DL, Teramachi J, Zhou H, Dempster DW, Windle JJ, Brown JP, Roodman GD (2011) Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62(P392L) mutation to Paget’s disease. Cell Metab 13:23–34PubMedCrossRef
153.
go back to reference Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD (2006) Expression of measles virus nucleocapsid protein in osteoclasts induces Paget’s disease-like bone lesions in mice. J Bone Miner Res 21:446–455PubMedCrossRef Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD (2006) Expression of measles virus nucleocapsid protein in osteoclasts induces Paget’s disease-like bone lesions in mice. J Bone Miner Res 21:446–455PubMedCrossRef
154.
go back to reference Ruddle NH, Li CB, Horne WC, Santiago P, Troiano N, Jay G, Horowitz Baron R (1993) Mice transgenic for HTLV-I LTR-tax exhibit tax expression in bone, skeletal alterations, and high bone turnover. Virology 197:196–204PubMedCrossRef Ruddle NH, Li CB, Horne WC, Santiago P, Troiano N, Jay G, Horowitz Baron R (1993) Mice transgenic for HTLV-I LTR-tax exhibit tax expression in bone, skeletal alterations, and high bone turnover. Virology 197:196–204PubMedCrossRef
155.
go back to reference Hiruma Y, Kurihara N, Subler MA, Zhou H, Boykin CS, Zhang H, Ishizuka S, Dempster DW, Roodman GD, Windle JJ (2008) A SQSTM1/p62 mutation linked to Paget’s disease increases the osteoclastogenic potential of the bone microenvironment. Hum Mol Genet 17:3708–3719PubMedCrossRef Hiruma Y, Kurihara N, Subler MA, Zhou H, Boykin CS, Zhang H, Ishizuka S, Dempster DW, Roodman GD, Windle JJ (2008) A SQSTM1/p62 mutation linked to Paget’s disease increases the osteoclastogenic potential of the bone microenvironment. Hum Mol Genet 17:3708–3719PubMedCrossRef
156.
go back to reference Custer SK, Neumann M, Lu H, Wright AC, Taylor JP (2010) Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet 19:1741–1755PubMedCrossRef Custer SK, Neumann M, Lu H, Wright AC, Taylor JP (2010) Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet 19:1741–1755PubMedCrossRef
157.
go back to reference Rea SL, Walsh JP, Ward L, Magno AL, Ward BK, Shaw B, Layfield R, Kent GN, Xu J, Ratajczak T (2009) Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin-binding. J Bone Miner Res 24:1216–1223PubMedCrossRef Rea SL, Walsh JP, Ward L, Magno AL, Ward BK, Shaw B, Layfield R, Kent GN, Xu J, Ratajczak T (2009) Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin-binding. J Bone Miner Res 24:1216–1223PubMedCrossRef
158.
go back to reference Johnson-Pais TL, Wisdom JH, Weldon KS, Cody JD, Hansen MF, Singer FR, Leach RJ (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18:1748–1753PubMedCrossRef Johnson-Pais TL, Wisdom JH, Weldon KS, Cody JD, Hansen MF, Singer FR, Leach RJ (2003) Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res 18:1748–1753PubMedCrossRef
159.
go back to reference Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo ML, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Maddali Bongi S, Di Fede G, Sfrerrazza C, Rini GB, Melchiorre D, Matucci-Cerenic M, Brandi ML (2004) Two novel mutations at exon 8 of Sequestosome 1 gene (SQSTM1) in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res 19:1013–1017PubMedCrossRef Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo ML, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Maddali Bongi S, Di Fede G, Sfrerrazza C, Rini GB, Melchiorre D, Matucci-Cerenic M, Brandi ML (2004) Two novel mutations at exon 8 of Sequestosome 1 gene (SQSTM1) in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res 19:1013–1017PubMedCrossRef
160.
go back to reference Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH (2004) Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype–phenotype correlation, functional analysis and structural consequences. J Bone Miner Res 19:1122–1127PubMedCrossRef Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, Walsh JP, Finlayson C, Cavey JR, Ciani B, Sheppard PW, Searle MS, Layfield R, Ralston SH (2004) Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype–phenotype correlation, functional analysis and structural consequences. J Bone Miner Res 19:1122–1127PubMedCrossRef
Metadata
Title
Pathogenesis of Paget Disease of Bone
Authors
Stuart H. Ralston
Rob Layfield
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 2/2012
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-012-9599-0

Other articles of this Issue 2/2012

Calcified Tissue International 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.