Skip to main content
Top
Published in: Calcified Tissue International 5/2008

01-11-2008

Feasibility of Measuring Trabecular Bone Structure of the Proximal Femur Using 64-Slice Multidetector Computed Tomography in a Clinical Setting

Authors: Gerd Diederichs, Thomas Link, Kentenich Marie, Markus Huber, Patrik Rogalla, Andrew Burghardt, Sharmila Majumdar, Ahi Issever

Published in: Calcified Tissue International | Issue 5/2008

Login to get access

Abstract

We studied the feasibility of cancellous bone structure assessment of the proximal femur using multidetector computed tomography (MDCT) in an simulated in vivo experimental model. The proximal femur of 15 intact human cadavers was examined using 64-row MDCT using a thin-section protocol with an in-plane spatial resolution of 273 μm. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the isolated specimens with a voxel size of 82 μm served as a standard of reference. Trabecular bone structure and optimized textural parameters were calculated in MDCT images and compared to measures obtained by HR-pQCT. Significant correlations between MDCT- and HR-pQCT-derived values for bone fraction (r = 0.87), trabecular separation (r = 0.66), and number (r = 0.53) were found. Parameters derived from textural analysis performed better in predicting trabecular separation (up to r = 0.86) and number (up to r = 0.83). Trabecular thickness could not be quantified correctly using MDCT, most likely due to its limited resolution. Individual parameters for assessement of trabecular microarchitecture can be measured using MDCT-derived imaging studies and a simulated in vivo setup. Thus, in vivo assessment of bone architecture in addition to BMD may be feasible in clinical practice.
Literature
1.
go back to reference Consensus Development Conference (1991) Prophylaxis and treatment of osteoporosis. Am J Med 90:107–110CrossRef Consensus Development Conference (1991) Prophylaxis and treatment of osteoporosis. Am J Med 90:107–110CrossRef
2.
go back to reference Cummings SR, Nevitt MC, Browner WS et al (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773PubMedCrossRef Cummings SR, Nevitt MC, Browner WS et al (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773PubMedCrossRef
3.
go back to reference Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–589PubMedCrossRef Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–589PubMedCrossRef
4.
go back to reference Taylor BC, Schreiner PJ, Stone KL et al (2004) Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc 52:1479–1486PubMedCrossRef Taylor BC, Schreiner PJ, Stone KL et al (2004) Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc 52:1479–1486PubMedCrossRef
5.
go back to reference Mundinger A, Wiesmeier B, Dinkel E, Helwig A, Beck A, Schulte Moenting J (1993) Quantitative image analysis of vertebral body architecture—improved diagnosis in osteoporosis based on high-resolution computed tomography. Br J Radiol 66:209–213PubMedCrossRef Mundinger A, Wiesmeier B, Dinkel E, Helwig A, Beck A, Schulte Moenting J (1993) Quantitative image analysis of vertebral body architecture—improved diagnosis in osteoporosis based on high-resolution computed tomography. Br J Radiol 66:209–213PubMedCrossRef
6.
go back to reference Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18PubMed Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18PubMed
7.
go back to reference Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53(Suppl 1):S127–S132PubMedCrossRef Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53(Suppl 1):S127–S132PubMedCrossRef
8.
go back to reference Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl 1):S121–S126PubMedCrossRef Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl 1):S121–S126PubMedCrossRef
9.
go back to reference Link TM, Majumdar S, Lin JC et al (1998) Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 22:15–24PubMedCrossRef Link TM, Majumdar S, Lin JC et al (1998) Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 22:15–24PubMedCrossRef
10.
go back to reference Link TM, Majumdar S, Lin JC et al (1998) A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 13:122–132PubMedCrossRef Link TM, Majumdar S, Lin JC et al (1998) A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 13:122–132PubMedCrossRef
11.
go back to reference Tabor Z, Rokita E (2007) Quantifying anisotropy of trabecular bone from gray-level images. Bone 40:966–972PubMedCrossRef Tabor Z, Rokita E (2007) Quantifying anisotropy of trabecular bone from gray-level images. Bone 40:966–972PubMedCrossRef
12.
go back to reference Wigderowitz CA, Paterson CR, Dashti H, McGurty D, Rowley DI (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11:840–846PubMedCrossRef Wigderowitz CA, Paterson CR, Dashti H, McGurty D, Rowley DI (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11:840–846PubMedCrossRef
13.
go back to reference Gordon CL, Lang TF, Augat P, Genant HK (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325PubMedCrossRef Gordon CL, Lang TF, Augat P, Genant HK (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325PubMedCrossRef
14.
go back to reference Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef
15.
go back to reference Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244PubMedCrossRef Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244PubMedCrossRef
16.
go back to reference Bauer JS, Issever AS, Fischbeck M et al (2004) Multislice-CT for structure analysis of trabecular bone—a comparison with micro-CT and biomechanical strength [in German]. Rofo 176:709–718PubMed Bauer JS, Issever AS, Fischbeck M et al (2004) Multislice-CT for structure analysis of trabecular bone—a comparison with micro-CT and biomechanical strength [in German]. Rofo 176:709–718PubMed
17.
go back to reference Issever AS, Vieth V, Lotter A et al (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9:1395–1406PubMedCrossRef Issever AS, Vieth V, Lotter A et al (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9:1395–1406PubMedCrossRef
18.
go back to reference Bauer JS, Kohlmann S, Eckstein F, Mueller D, Lochmuller EM, Link TM (2006) Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 78:78–89PubMedCrossRef Bauer JS, Kohlmann S, Eckstein F, Mueller D, Lochmuller EM, Link TM (2006) Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 78:78–89PubMedCrossRef
19.
go back to reference Link TM, Vieth V, Langenberg R et al (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165PubMedCrossRef Link TM, Vieth V, Langenberg R et al (2003) Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int 72:156–165PubMedCrossRef
20.
go back to reference Bauer JS, Link TM, Burghardt A et al (2007) Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int 80:366–373PubMedCrossRef Bauer JS, Link TM, Burghardt A et al (2007) Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int 80:366–373PubMedCrossRef
21.
go back to reference Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRef Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRef
22.
go back to reference Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546PubMedCrossRef Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546PubMedCrossRef
23.
go back to reference Muller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39:145–164PubMedCrossRef Muller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39:145–164PubMedCrossRef
24.
go back to reference Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24:35–39PubMedCrossRef Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24:35–39PubMedCrossRef
25.
go back to reference Link TM, Majumdar S, Augat P et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef Link TM, Majumdar S, Augat P et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef
26.
go back to reference Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. EEE Trans Syst Man Cybernet 3:610–621CrossRef Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. EEE Trans Syst Man Cybernet 3:610–621CrossRef
27.
go back to reference Anys H, He C (1995) Evaluation of textural and multipolarization radar features for crop classification. IEEE 33:1170–1181 Anys H, He C (1995) Evaluation of textural and multipolarization radar features for crop classification. IEEE 33:1170–1181
28.
go back to reference Jiang C, Pitt RE, Bertram JE, Aneshansley DJ (1999) Fractal-based image texture analysis of trabecular bone architecture. Med Biol Eng Comput 37:413–418PubMedCrossRef Jiang C, Pitt RE, Bertram JE, Aneshansley DJ (1999) Fractal-based image texture analysis of trabecular bone architecture. Med Biol Eng Comput 37:413–418PubMedCrossRef
29.
go back to reference Boehm H, Link T, Monetti R (2006) Analysis of the topological properties of the proximal femur on a regional scale: evaluation of multi-detector CT-scans for the assessment of biomechanical strength using local Minkowski functionals in 3D. In: SPIE Medical Imaging. San Diego, pp 6144–6254 Boehm H, Link T, Monetti R (2006) Analysis of the topological properties of the proximal femur on a regional scale: evaluation of multi-detector CT-scans for the assessment of biomechanical strength using local Minkowski functionals in 3D. In: SPIE Medical Imaging. San Diego, pp 6144–6254
30.
go back to reference Boehm HF, Raeth C, Monetti RA et al (2003) Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280PubMedCrossRef Boehm HF, Raeth C, Monetti RA et al (2003) Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280PubMedCrossRef
31.
go back to reference Wachter NJ, Augat P, Mentzel M et al (2001) Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28:133–139PubMedCrossRef Wachter NJ, Augat P, Mentzel M et al (2001) Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28:133–139PubMedCrossRef
32.
go back to reference Link TM, Vieth V, Stehling C et al (2003) High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671PubMed Link TM, Vieth V, Stehling C et al (2003) High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671PubMed
33.
go back to reference Cortet B, Chappard D, Boutry N, Dubois P, Cotten A, Marchandise X (2004) Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int 75:23–31PubMedCrossRef Cortet B, Chappard D, Boutry N, Dubois P, Cotten A, Marchandise X (2004) Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int 75:23–31PubMedCrossRef
34.
go back to reference Patel PV, Prevrhal S, Bauer JS et al (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253PubMedCrossRef Patel PV, Prevrhal S, Bauer JS et al (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253PubMedCrossRef
35.
go back to reference Graeff C, Timm W, Nickelsen TN et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22:1426–1433PubMedCrossRef Graeff C, Timm W, Nickelsen TN et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 22:1426–1433PubMedCrossRef
36.
go back to reference Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11:286–297PubMedCrossRef Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11:286–297PubMedCrossRef
37.
go back to reference Vieth V, Link TM, Lotter A et al (2001) Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217PubMedCrossRef Vieth V, Link TM, Lotter A et al (2001) Does the trabecular bone structure depicted by high-resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217PubMedCrossRef
38.
go back to reference Kazakia GJ, Hyun B, Burghardt AJ et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23:463–474PubMedCrossRef Kazakia GJ, Hyun B, Burghardt AJ et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23:463–474PubMedCrossRef
39.
go back to reference Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27:854–859PubMedCrossRef Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27:854–859PubMedCrossRef
40.
go back to reference Eckstein F, Lochmuller EM, Lill CA et al (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171PubMedCrossRef Eckstein F, Lochmuller EM, Lill CA et al (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171PubMedCrossRef
41.
go back to reference Muller R, Koller B, Hildebrand T et al (1996) Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography. Technol Health Care 4:113–119PubMed Muller R, Koller B, Hildebrand T et al (1996) Resolution dependency of microstructural properties of cancellous bone based on three-dimensional mu-tomography. Technol Health Care 4:113–119PubMed
42.
go back to reference MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105PubMedCrossRef MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105PubMedCrossRef
Metadata
Title
Feasibility of Measuring Trabecular Bone Structure of the Proximal Femur Using 64-Slice Multidetector Computed Tomography in a Clinical Setting
Authors
Gerd Diederichs
Thomas Link
Kentenich Marie
Markus Huber
Patrik Rogalla
Andrew Burghardt
Sharmila Majumdar
Ahi Issever
Publication date
01-11-2008
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 5/2008
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-008-9181-y

Other articles of this Issue 5/2008

Calcified Tissue International 5/2008 Go to the issue