Skip to main content
Top
Published in: Calcified Tissue International 1/2006

01-07-2006

Sex Differences in Bone Size and Bone Mineral Density Exist before Puberty. The Copenhagen School Child Intervention Study (CoSCIS)

Authors: H. Hasselstrøm, K. M. Karlsson, S. E. Hansen, V. Grønfeldt, K. Froberg, L. B. Andersen

Published in: Calcified Tissue International | Issue 1/2006

Login to get access

Abstract

Background

The aim of this study was to provide normative data of bone mineral density (BMD; g/cm2) of the forearm and the calcaneus, evaluated by peripheral dual X ray absorbtiometry (DXA), in children aged 6 to 7 years of age and to evaluate the association with anthropometrics and sex.

Material and methods

368 boys and 326 girls with a mean age of 6.7 ± 0.4 years participated. BMD was measured by DXA in the forearms and the os calcanei, with average values presented in this report. Measurements of weight, height, skinfolds, the width of distal radius and ulna, and the femur condyles were collected and body composition estimated from skinfolds measurements.

Results

There was no difference in calcaneus BMD when comparing boys and girls, whereas the boys had 4.5% (0.013 g/cm2) higher forearm BMD than the girls (P < 0.001). Calcaneal BMD (mean 0.318 g/cm2) was 11% higher than forearm BMD (mean 0.283 g/cm2). Linear relationship was found between calcaneus BMD and weight (partial r = 0.50), Fat free mass (FFM) (partial r = 0.50), Fat mass (FM) (partial r = 0.45), % body fat (partial r = 0.29) and knee width (partial r = 0.46), all P < 0.000 respectively. Adjusted for weight the relationship between calcaneus BMD and FFM, FM, %body fat and knee width disappeared. There were significant relationships between the forearm BMD and weight (partial r = 0.37), FFM (partial r = 0.39), FM (partial r = 0.28), %body fat (partial r = 0.14) and wrist width (partial r = 0.24), all P < 0.000 respectively. Adjusted for body weight, the relationship remained between forearm BMD and FFM (r = 0.10), FM (R = −0.10) and % body fat (r = −0.12), all P < 0.000 respectively. Children measured in the spring had 3.5% (P < 0.01) higher calcaneus BMD than children measured in the winter.

Conclusion

Seven year old boys have higher BMD in the forearm but not in the calcaneus in comparison with girls of a similar age. Body weight is the best predictor of calcaneus BMD, accounting for 25% of the variance whereas body weight and FFM are the best predictors of forearm BMD, each accounting for 17% of the variance, respectively.
Literature
1.
go back to reference Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol 133:265–271PubMed Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol 133:265–271PubMed
2.
3.
go back to reference Molgaard C, Thomsen BL, Michaelsen KF (1998) Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr 87:494–499PubMedCrossRef Molgaard C, Thomsen BL, Michaelsen KF (1998) Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr 87:494–499PubMedCrossRef
4.
go back to reference Molgaard C, Thomsen BL, Michaelsen KF (1999) Whole body bone mineral accretion in healthy children and adolescents. Arch Dis Child 81:10–15PubMed Molgaard C, Thomsen BL, Michaelsen KF (1999) Whole body bone mineral accretion in healthy children and adolescents. Arch Dis Child 81:10–15PubMed
5.
go back to reference Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802PubMedCrossRef Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802PubMedCrossRef
6.
go back to reference Malina RM, Bouchard C (2004) Growth, Matruation and Physical Activity. Human Kinetics, Champaign Malina RM, Bouchard C (2004) Growth, Matruation and Physical Activity. Human Kinetics, Champaign
7.
go back to reference Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMed Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMed
8.
go back to reference Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31PubMed Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31PubMed
9.
go back to reference Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905PubMedCrossRef Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905PubMedCrossRef
10.
go back to reference Khan K, McKay HA, Kannus P, Bailey DA, Wark JD, Bennell KL (2001) Physical activity and bone health. Human Kinetics, Champaign Khan K, McKay HA, Kannus P, Bailey DA, Wark JD, Bennell KL (2001) Physical activity and bone health. Human Kinetics, Champaign
11.
go back to reference Sundberg M, Gardsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415PubMedCrossRef Sundberg M, Gardsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415PubMedCrossRef
12.
go back to reference Sowers M, Kshirsagar A, Crutchfield M, Updike S (1991) Body composition, age and femoral bone mass of young adult women. Ann Epidemiol 1:245–254PubMedCrossRef Sowers M, Kshirsagar A, Crutchfield M, Updike S (1991) Body composition, age and femoral bone mass of young adult women. Ann Epidemiol 1:245–254PubMedCrossRef
13.
go back to reference Lindsay R, Cosman F, Herrington BS, Himmelstein S (1992) Bone mass and body composition in normal women. J Bone Miner Res 7:55–63PubMed Lindsay R, Cosman F, Herrington BS, Himmelstein S (1992) Bone mass and body composition in normal women. J Bone Miner Res 7:55–63PubMed
15.
go back to reference Ensrud KE, Lipschutz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Genant HK, Cummings SR (1997) Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 103:274–280 Ensrud KE, Lipschutz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Genant HK, Cummings SR (1997) Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 103:274–280
16.
go back to reference Wegner M, Snow-Harder C, Robinson T, Shaw J, Shelley A (1993) Lean mass, not fat mass, independently predicts whole body mineral density in postmenopausal women. Med Sci Sports Exerc 25:S854 Wegner M, Snow-Harder C, Robinson T, Shaw J, Shelley A (1993) Lean mass, not fat mass, independently predicts whole body mineral density in postmenopausal women. Med Sci Sports Exerc 25:S854
17.
go back to reference Aloia JF, McGowan DM, Vaswani AN, Ross P, Cohen SH (1991) Relationship of menopause to skeletal and muscle mass. Am J Clin Nutr 53:1378–1383PubMed Aloia JF, McGowan DM, Vaswani AN, Ross P, Cohen SH (1991) Relationship of menopause to skeletal and muscle mass. Am J Clin Nutr 53:1378–1383PubMed
18.
go back to reference Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782PubMedCrossRef Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782PubMedCrossRef
19.
go back to reference Pocock N, Eisman J, Gwinn T, Sambrook P, Kelly P, Freund J, Yeates M (1989) Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass. J Bone Miner Res 4:441–446PubMed Pocock N, Eisman J, Gwinn T, Sambrook P, Kelly P, Freund J, Yeates M (1989) Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass. J Bone Miner Res 4:441–446PubMed
20.
go back to reference Snow-Harder C, Bouxsein M, Lewis BT, Charette S, Weinstein P, Marcus R (1990) Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 5:589–595 Snow-Harder C, Bouxsein M, Lewis BT, Charette S, Weinstein P, Marcus R (1990) Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 5:589–595
21.
go back to reference Wang MC, Bachrach LK, Loan MV, Hudes M, Flegal KM, and Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37, 474–481. Ref Type: Journal (Full)PubMedCrossRef Wang MC, Bachrach LK, Loan MV, Hudes M, Flegal KM, and Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37, 474–481. Ref Type: Journal (Full)PubMedCrossRef
22.
23.
go back to reference Binkley TL, Specker BL, Wittig TA (2002) Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J.Clin.Densitom. 5:343–353PubMedCrossRef Binkley TL, Specker BL, Wittig TA (2002) Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J.Clin.Densitom. 5:343–353PubMedCrossRef
24.
go back to reference GE LUNAR. PIXI Bone densitometer Operator’s manual Software Version: 1.4 CEMDD. 2006. Ref Type: Pamphlet GE LUNAR. PIXI Bone densitometer Operator’s manual Software Version: 1.4 CEMDD. 2006. Ref Type: Pamphlet
25.
go back to reference De Lorenzo A, Bertini I, Candeloro N, Iacopino L, Andreoli A, Van Loan MD (1998) Comparison of different techniques to measure body composition in moderately active adolescents. Br J Sports Med 32:215–219PubMedCrossRef De Lorenzo A, Bertini I, Candeloro N, Iacopino L, Andreoli A, Van Loan MD (1998) Comparison of different techniques to measure body composition in moderately active adolescents. Br J Sports Med 32:215–219PubMedCrossRef
26.
go back to reference Weststrate JA, Deurenberg P (1989) Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements [published errata appear in Am J Clin Nutr 1991 Aug;54(2):428 and 1991 Sep;54(3):590]. Am J Clin Nutr 50:1104–1115PubMed Weststrate JA, Deurenberg P (1989) Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements [published errata appear in Am J Clin Nutr 1991 Aug;54(2):428 and 1991 Sep;54(3):590]. Am J Clin Nutr 50:1104–1115PubMed
27.
go back to reference Altmann DG (1991) Practical Statistisc for Medical Research. Chapman & Hall, London Altmann DG (1991) Practical Statistisc for Medical Research. Chapman & Hall, London
28.
go back to reference Åstrand P-O, Rodahl K, Dahl HA, Strømme SB (2003) Body dimensions and muscular exercise. In: Åstrand P-O, Rodhal K, Dahl HA, Strømme SB (eds) Textbook of Work Physiology. Physiological Bases of Exercise. Human Kinetics, Champaign, pp 299–313 Åstrand P-O, Rodahl K, Dahl HA, Strømme SB (2003) Body dimensions and muscular exercise. In: Åstrand P-O, Rodhal K, Dahl HA, Strømme SB (eds) Textbook of Work Physiology. Physiological Bases of Exercise. Human Kinetics, Champaign, pp 299–313
29.
go back to reference Hernandez-Prado B, Lazcano-Ponce E, Cruz-Valdez A, Diaz R, Tamayo J, Hernandez-Avila M (2002) Validity of bone mineral density measurements in distal sites as an indicator of total bone mineral density in a group of pre-adolescent and adolescent women. Arch Med Res 33:33–39PubMedCrossRef Hernandez-Prado B, Lazcano-Ponce E, Cruz-Valdez A, Diaz R, Tamayo J, Hernandez-Avila M (2002) Validity of bone mineral density measurements in distal sites as an indicator of total bone mineral density in a group of pre-adolescent and adolescent women. Arch Med Res 33:33–39PubMedCrossRef
30.
go back to reference Iki M, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS) Study. Osteoporos Int 12:529–537PubMedCrossRef Iki M, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS) Study. Osteoporos Int 12:529–537PubMedCrossRef
31.
go back to reference Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–417PubMedCrossRef Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–417PubMedCrossRef
32.
go back to reference Chinn DJ, Fordham JN, Kibirige MS, Crabtree NJ, Venables J, Bates J, Pitcher O (2005) Bone density at the os calcis: reference values, reproducibility, and effects of fracture history and physical activity. Arch Dis Child 90:30–35PubMedCrossRef Chinn DJ, Fordham JN, Kibirige MS, Crabtree NJ, Venables J, Bates J, Pitcher O (2005) Bone density at the os calcis: reference values, reproducibility, and effects of fracture history and physical activity. Arch Dis Child 90:30–35PubMedCrossRef
33.
go back to reference Garn P (1970) The earlier gain and later los of cortical bone. Nutritional perspectives. Springfield Garn P (1970) The earlier gain and later los of cortical bone. Nutritional perspectives. Springfield
34.
go back to reference Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804PubMedCrossRef Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804PubMedCrossRef
35.
36.
go back to reference Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren JJ (2001) Physical Activity and Bone Measures in Young Children: The Iowa Bone Development Study. Pediatrics 107:1387–1393PubMedCrossRef Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren JJ (2001) Physical Activity and Bone Measures in Young Children: The Iowa Bone Development Study. Pediatrics 107:1387–1393PubMedCrossRef
37.
go back to reference Rowlands AV, Ingledew DK, Powell SM, Eston RG (2004) Interactive effects of habitual physical activity and calcium intake on bone density in boys and girls. J Appl Physiol 97:1203–1208PubMedCrossRef Rowlands AV, Ingledew DK, Powell SM, Eston RG (2004) Interactive effects of habitual physical activity and calcium intake on bone density in boys and girls. J Appl Physiol 97:1203–1208PubMedCrossRef
38.
go back to reference Horlick M, Wang J, Pierson R-NJ, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics 114:e337–e345PubMedCrossRef Horlick M, Wang J, Pierson R-NJ, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics 114:e337–e345PubMedCrossRef
39.
go back to reference Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef
40.
go back to reference Hsu ES, Patwardhan AG, Meade KP, Light TR, Martin WR (1993) Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna. J Biomech 26:1307–1318PubMedCrossRef Hsu ES, Patwardhan AG, Meade KP, Light TR, Martin WR (1993) Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna. J Biomech 26:1307–1318PubMedCrossRef
41.
go back to reference Jones IE, Williams SM, Dow N, Goulding A (2002) How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int 13:990–995PubMedCrossRef Jones IE, Williams SM, Dow N, Goulding A (2002) How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int 13:990–995PubMedCrossRef
42.
go back to reference Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ, Langley J (2005) First fracture is associated with increased risk of new fractures during growth. J Pediatr 146:286–288PubMedCrossRef Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ, Langley J (2005) First fracture is associated with increased risk of new fractures during growth. J Pediatr 146:286–288PubMedCrossRef
43.
go back to reference Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V (2002) Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab 87:2024–2032PubMedCrossRef Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V (2002) Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab 87:2024–2032PubMedCrossRef
44.
go back to reference Gerdhem P, Mallmin H, Akesson K, Obrant KJ (2004) Seasonal variation in bone density in postmenopausal women. J Clin Densitom 7:93–100PubMedCrossRef Gerdhem P, Mallmin H, Akesson K, Obrant KJ (2004) Seasonal variation in bone density in postmenopausal women. J Clin Densitom 7:93–100PubMedCrossRef
45.
go back to reference Land C, Blum WF, Stabrey A, Schoenau E (2005) Seasonality of growth response to GH therapy in prepubertal children with idiopathic growth hormone deficiency. Eur J Endocrinol 152:727–733PubMedCrossRef Land C, Blum WF, Stabrey A, Schoenau E (2005) Seasonality of growth response to GH therapy in prepubertal children with idiopathic growth hormone deficiency. Eur J Endocrinol 152:727–733PubMedCrossRef
46.
go back to reference Fewtrell MS (2003) Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798PubMedCrossRef Fewtrell MS (2003) Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798PubMedCrossRef
47.
go back to reference Schoenau E, Saggese G, Peter F, Baroncelli GI, Shaw NJ, Crabtree NJ, Zadik Z, Neu CM, Noordam C, Radetti G, Hochberg Z (2004) From bone biology to bone analysis. Horm Res 61:257–269PubMedCrossRef Schoenau E, Saggese G, Peter F, Baroncelli GI, Shaw NJ, Crabtree NJ, Zadik Z, Neu CM, Noordam C, Radetti G, Hochberg Z (2004) From bone biology to bone analysis. Horm Res 61:257–269PubMedCrossRef
48.
go back to reference Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMedCrossRef Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMedCrossRef
49.
go back to reference Zebaze RM, Welsh F, Juliano Burns S, Evans A, and Seeman E (2004) The femoral neck is ellipsoid: the assumption of circularity of parallelepipedal shape introduces errors in volume and volumetric bone mineral density. Journal of Bone and Mineral Research 19(Suppl 1), S366. Ref Type: Journal (Full) Zebaze RM, Welsh F, Juliano Burns S, Evans A, and Seeman E (2004) The femoral neck is ellipsoid: the assumption of circularity of parallelepipedal shape introduces errors in volume and volumetric bone mineral density. Journal of Bone and Mineral Research 19(Suppl 1), S366. Ref Type: Journal (Full)
Metadata
Title
Sex Differences in Bone Size and Bone Mineral Density Exist before Puberty. The Copenhagen School Child Intervention Study (CoSCIS)
Authors
H. Hasselstrøm
K. M. Karlsson
S. E. Hansen
V. Grønfeldt
K. Froberg
L. B. Andersen
Publication date
01-07-2006
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 1/2006
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-006-0012-8

Other articles of this Issue 1/2006

Calcified Tissue International 1/2006 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.