Skip to main content
Top
Published in: Osteoporosis International 6/2009

01-06-2009 | Bone Quality Seminars: Ultrastructure

Indentation of bone tissue: a short review

Author: P. K. Zysset

Published in: Osteoporosis International | Issue 6/2009

Login to get access

Excerpt

Bone is a highly hierarchical natural composite material, which mechanical properties are investigated from the physiological elastic behavior up to impact or fatigue damage accumulation responsible for traumatic or stress fractures. Each hierarchical level of organization contributes to the global mechanical response of a bone structure:
  • The mineralized collagen fibril (MCF, 200 nm)
  • The lamella (2–7 μm)
  • The bone structural unit (BSU, 60 μm)
  • Bone tissue, cortical shell, or trabeculae (100–3,000 μm)
  • Trabecular bone (TB, mm)
  • Organ (cm)
Literature
1.
go back to reference Amprino R (1958) Investigations on some physical properties of bone tissue. Acta Anatomica 34:161–186PubMed Amprino R (1958) Investigations on some physical properties of bone tissue. Acta Anatomica 34:161–186PubMed
2.
go back to reference Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86(33–35):5691–5703CrossRef Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86(33–35):5691–5703CrossRef
3.
go back to reference Blackburn J, Hodgskinson R, Currey JD, Mason JE (1992) Mechanical properties of microcallus in human cancellous bone. J Orthop Res 10(2):237–246PubMedCrossRef Blackburn J, Hodgskinson R, Currey JD, Mason JE (1992) Mechanical properties of microcallus in human cancellous bone. J Orthop Res 10(2):237–246PubMedCrossRef
4.
go back to reference Bonser RH (1995) Longitudinal variation in mechanical competence of bone along avian humerus. J Exp Biol 198:209–212PubMed Bonser RH (1995) Longitudinal variation in mechanical competence of bone along avian humerus. J Exp Biol 198:209–212PubMed
5.
go back to reference Bushby AJ, Ferguson VL, Boyde A (2004) Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmetacrylate. J Mater Res 19(1):249–259CrossRef Bushby AJ, Ferguson VL, Boyde A (2004) Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmetacrylate. J Mater Res 19(1):249–259CrossRef
6.
go back to reference Carlstroem D (1954) Microhardness measurements on single Haversian systems in bone. Experientia 10:171–172CrossRef Carlstroem D (1954) Microhardness measurements on single Haversian systems in bone. Experientia 10:171–172CrossRef
7.
go back to reference Cheng Y-T, Cheng C-M (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J Mater Res 20(4):1046–1053CrossRef Cheng Y-T, Cheng C-M (2005) Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J Mater Res 20(4):1046–1053CrossRef
8.
go back to reference Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P (2007) Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech 40(15):3333–3340PubMedCrossRef Chevalier Y, Pahr D, Allmer H, Charlebois M, Zysset P (2007) Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech 40(15):3333–3340PubMedCrossRef
9.
go back to reference Coats AM, Zioupos P, Aspden RM (2003) Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif Tissue Int 73:66–71PubMedCrossRef Coats AM, Zioupos P, Aspden RM (2003) Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif Tissue Int 73:66–71PubMedCrossRef
10.
go back to reference Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on vickers hardness of human trabecular bone. J Biomech 40(14):3267–70PubMedCrossRef Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on vickers hardness of human trabecular bone. J Biomech 40(14):3267–70PubMedCrossRef
11.
go back to reference Donnelly E, Baker SP, Boskey AL, Van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Materi Res, Part A 77A:426–435CrossRef Donnelly E, Baker SP, Boskey AL, Van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Materi Res, Part A 77A:426–435CrossRef
12.
go back to reference Evans FG, Lebow M (1951) Regional differences in some of the physical properties of the human femur. J Appl Physiol 3:563–572PubMed Evans FG, Lebow M (1951) Regional differences in some of the physical properties of the human femur. J Appl Physiol 3:563–572PubMed
13.
go back to reference Evans GP, Behiri JC, Currey JD, Bonfield W (1990) Microhardness and Young’s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in bone analogue. J Mater Sci Mater Med 1:38–43CrossRef Evans GP, Behiri JC, Currey JD, Bonfield W (1990) Microhardness and Young’s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in bone analogue. J Mater Sci Mater Med 1:38–43CrossRef
14.
go back to reference Fischer-Cripps AC (2002) Nanoindentation. Springer Verlag, New York Fischer-Cripps AC (2002) Nanoindentation. Springer Verlag, New York
15.
go back to reference Guo XE, Goldstein SA (1997) Is trabecular bone tissue different from cortical bone tissue? FORMA 12:185–196 Guo XE, Goldstein SA (1997) Is trabecular bone tissue different from cortical bone tissue? FORMA 12:185–196
16.
go back to reference Hengsberger S, Kulik A, Zysset P (2001) A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur Cell Mater 1:12–7PubMed Hengsberger S, Kulik A, Zysset P (2001) A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur Cell Mater 1:12–7PubMed
17.
go back to reference Hengsberger S, Boivin G, Zysset Ph (2002a) Morphological and mechanical properties of bone structural units: a two-case study. Int J Jpn Soc Mech Eng 45(4):936–943 Hengsberger S, Boivin G, Zysset Ph (2002a) Morphological and mechanical properties of bone structural units: a two-case study. Int J Jpn Soc Mech Eng 45(4):936–943
18.
go back to reference Hengsberger S, Kulik A, Zysset Ph (2002b) Nanoindentation discriminates the elastic properties of single human bone lamellae under dry and physiological conditions. Bone Hengsberger S, Kulik A, Zysset Ph (2002b) Nanoindentation discriminates the elastic properties of single human bone lamellae under dry and physiological conditions. Bone
19.
go back to reference Hengsberger S, Enstroem J, Peyrin F, Zysset Ph (2003) How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J Biomech 36:1503–1509PubMedCrossRef Hengsberger S, Enstroem J, Peyrin F, Zysset Ph (2003) How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J Biomech 36:1503–1509PubMedCrossRef
20.
go back to reference Hodgskinson R, Currey JD, Evans GP (1989) Hardness, an indicator of the mechanical competence of cancellous bone. J Orthop Res 7(5):754–758PubMedCrossRef Hodgskinson R, Currey JD, Evans GP (1989) Hardness, an indicator of the mechanical competence of cancellous bone. J Orthop Res 7(5):754–758PubMedCrossRef
21.
go back to reference Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000a) Heterogeneity of bone lamellar-level elastic moduli. Bone 26(6):603–609PubMedCrossRef Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000a) Heterogeneity of bone lamellar-level elastic moduli. Bone 26(6):603–609PubMedCrossRef
22.
go back to reference Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA (2000b) Age, gender and bone lamellae elastic moduli. J Orthop Res 18(3):432–437PubMedCrossRef Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA (2000b) Age, gender and bone lamellae elastic moduli. J Orthop Res 18(3):432–437PubMedCrossRef
23.
go back to reference Hoffler CE, Guo XG, Zysset PK, Goldstein SA (2005) An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng 127:1046–1053PubMedCrossRef Hoffler CE, Guo XG, Zysset PK, Goldstein SA (2005) An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng 127:1046–1053PubMedCrossRef
24.
go back to reference Lereim P, Goldie IF (1975) Relationship between morphologic features and hardness of the subchondral bone of the medial tibial condyle in the normal state and in osteoarthritis and rheumatoid arthritis. Archiv fuer Orthopdische und Unfallchirurgie 81:1–11 Lereim P, Goldie IF (1975) Relationship between morphologic features and hardness of the subchondral bone of the medial tibial condyle in the normal state and in osteoarthritis and rheumatoid arthritis. Archiv fuer Orthopdische und Unfallchirurgie 81:1–11
25.
go back to reference Lereim P, Goldie I, Dahlberg E (1974) Hardness of the subchondral bone of the tibial condyles in the normal state and in osteoarthritis and rheumatoid arthritis. Acta Orthopaedica Scandinavica 45:614–627PubMedCrossRef Lereim P, Goldie I, Dahlberg E (1974) Hardness of the subchondral bone of the tibial condyles in the normal state and in osteoarthritis and rheumatoid arthritis. Acta Orthopaedica Scandinavica 45:614–627PubMedCrossRef
26.
go back to reference Lexer EW (1929) Untersuchungen ueber die Knochenhaerte des Humerus. Zeitschrift fuer Konstitutionslehre 14:227–243 Lexer EW (1929) Untersuchungen ueber die Knochenhaerte des Humerus. Zeitschrift fuer Konstitutionslehre 14:227–243
27.
go back to reference Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented nanoindentation: advances in understanding and refinements of the methodology. J Mater Res 19(1):3–20CrossRef Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented nanoindentation: advances in understanding and refinements of the methodology. J Mater Res 19(1):3–20CrossRef
28.
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRef
29.
go back to reference Oyen ML, Bembey AK, Bushby AJ (2008) Poroelastic nanoindentation responses of hydrated bone. J Mater Res 23:1307–1314CrossRef Oyen ML, Bembey AK, Bushby AJ (2008) Poroelastic nanoindentation responses of hydrated bone. J Mater Res 23:1307–1314CrossRef
30.
go back to reference Ramrakhiani M, Pal D, Murty TS (1979) Micro-indentation hardness studies on human bones. Acta Anatomica 103:358–362PubMed Ramrakhiani M, Pal D, Murty TS (1979) Micro-indentation hardness studies on human bones. Acta Anatomica 103:358–362PubMed
31.
go back to reference Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488PubMedCrossRef Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488PubMedCrossRef
32.
go back to reference Rho JY, Tsui T, Pharr O (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomater 18(29):1325–1330CrossRef Rho JY, Tsui T, Pharr O (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomater 18(29):1325–1330CrossRef
33.
go back to reference Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25(3):295–300PubMedCrossRef Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25(3):295–300PubMedCrossRef
34.
go back to reference Riches PE, Everitt NM, McNally DS (2000) Knoop microhardness anisotropy of the ovine radius. J Biomech 33(12):1551–1557PubMedCrossRef Riches PE, Everitt NM, McNally DS (2000) Knoop microhardness anisotropy of the ovine radius. J Biomech 33(12):1551–1557PubMedCrossRef
35.
go back to reference Riches PE, Everitt NM, Heggie AR, McNally DS (1997) Microhardness anisotropy of lamellar bone. J Biomech 30(10):1059–1061PubMedCrossRef Riches PE, Everitt NM, Heggie AR, McNally DS (1997) Microhardness anisotropy of lamellar bone. J Biomech 30(10):1059–1061PubMedCrossRef
36.
go back to reference R. Roessle (1927) Untersuchungen ueber Knochenhaerte. Beitraege zur pathologische Anatomie und zur allgemeine Pathologie, 77 R. Roessle (1927) Untersuchungen ueber Knochenhaerte. Beitraege zur pathologische Anatomie und zur allgemeine Pathologie, 77
37.
go back to reference Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human biopsies. Bone 23(4):319–326PubMedCrossRef Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human biopsies. Bone 23(4):319–326PubMedCrossRef
38.
go back to reference Stea S, Visentin M, Savarino L, Ciapetti G, Donati ME, Moroni A, Caja V, Pizzoferrato A (1995) Microhardness of bone at the interface with ceramic-coated metal implants. J Biomed Materi Res 29:695–699CrossRef Stea S, Visentin M, Savarino L, Ciapetti G, Donati ME, Moroni A, Caja V, Pizzoferrato A (1995) Microhardness of bone at the interface with ceramic-coated metal implants. J Biomed Materi Res 29:695–699CrossRef
39.
go back to reference Swadener JG, Pharr GM (2001) Indentation of elastically anisotropic halfspaces by cones and parabolae of revolution. Philos Mag A 81(2):447–466CrossRef Swadener JG, Pharr GM (2001) Indentation of elastically anisotropic halfspaces by cones and parabolae of revolution. Philos Mag A 81(2):447–466CrossRef
40.
go back to reference Szilagi M, Kovacs AB, Palfalvi I (1980) Relationship between the ash content and microscopic hardness of swine bones. Acta Veterinaria Academiae Scientiarum Hungaricae 28:455–462 Szilagi M, Kovacs AB, Palfalvi I (1980) Relationship between the ash content and microscopic hardness of swine bones. Acta Veterinaria Academiae Scientiarum Hungaricae 28:455–462
41.
go back to reference Tang B, Ngan HW (2006) Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos Mag 86(33–35):5653–5666CrossRef Tang B, Ngan HW (2006) Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos Mag 86(33–35):5653–5666CrossRef
42.
go back to reference Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32:437–441PubMedCrossRef Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32:437–441PubMedCrossRef
43.
go back to reference Vandamme M, Ulm F-J (2006) Viscoelastic solution for conical indentation. Int J Solids Struct 43:3142–3165CrossRef Vandamme M, Ulm F-J (2006) Viscoelastic solution for conical indentation. Int J Solids Struct 43:3142–3165CrossRef
44.
go back to reference Wang X, Sudhaker Rao D, Ajdelsztajn L, Ciarelli TE, Lavernia EJ, Fyhrie DP (2008) Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res B Appl Biomater 85(1):68–77PubMed Wang X, Sudhaker Rao D, Ajdelsztajn L, Ciarelli TE, Lavernia EJ, Fyhrie DP (2008) Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res B Appl Biomater 85(1):68–77PubMed
45.
go back to reference Weaver JK (1966) The microscopic hardness of bone. J Bone Jt Surg 48-A(2):273–288 Weaver JK (1966) The microscopic hardness of bone. J Bone Jt Surg 48-A(2):273–288
46.
go back to reference Weber M, Roschger P, Fratzl-Zelman N, Schoberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39(3):616–22PubMedCrossRef Weber M, Roschger P, Fratzl-Zelman N, Schoberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39(3):616–22PubMedCrossRef
47.
go back to reference Xu J, Rho JY, Mishra SR, Fan Z (2003) Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J Biomed Mater Res A 67(3):719–26PubMedCrossRef Xu J, Rho JY, Mishra SR, Fan Z (2003) Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J Biomed Mater Res A 67(3):719–26PubMedCrossRef
48.
go back to reference Ziv V, Wigner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18(5):417–428PubMedCrossRef Ziv V, Wigner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18(5):417–428PubMedCrossRef
49.
go back to reference Zysset PK, Guo XE, Hoffler CE, Moore K, Goldstein SA. (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012PubMedCrossRef Zysset PK, Guo XE, Hoffler CE, Moore K, Goldstein SA. (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012PubMedCrossRef
Metadata
Title
Indentation of bone tissue: a short review
Author
P. K. Zysset
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 6/2009
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-009-0854-9

Other articles of this Issue 6/2009

Osteoporosis International 6/2009 Go to the issue

Bone Quality Seminars: Ultrastructure

The role of osteocytes in bone mechanotransduction

Bone Quality Seminars: Ultrastructure

Bone strength and ultrastructure