Skip to main content
Top
Published in: Osteoporosis International 10/2008

01-10-2008 | Original Article

Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children?

Authors: H. M. Macdonald, S. A. Kontulainen, M. A. Petit, T. J. Beck, K. M. Khan, H. A. McKay

Published in: Osteoporosis International | Issue 10/2008

Login to get access

Abstract

Summary

The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2–5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2–4% at the lumbar spine and total body in boys.

Introduction

We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9–11 yrs.

Methods

We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates.

Results

Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance.

Conclusion

AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.
Literature
1.
go back to reference Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD (1997) Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12:1453–1462PubMedCrossRef Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD (1997) Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res 12:1453–1462PubMedCrossRef
2.
go back to reference Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: A controlled prospective study. J Bone Miner Res 13:1814–1821PubMedCrossRef Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: A controlled prospective study. J Bone Miner Res 13:1814–1821PubMedCrossRef
3.
go back to reference McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM (2000) Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162PubMedCrossRef McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM (2000) Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr 136:156–162PubMedCrossRef
4.
go back to reference Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I (2000) High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 11:1010–1017PubMedCrossRef Heinonen A, Sievanen H, Kannus P, Oja P, Pasanen M, Vuori I (2000) High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 11:1010–1017PubMedCrossRef
5.
go back to reference Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156PubMedCrossRef Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156PubMedCrossRef
6.
go back to reference Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK (2006) A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res 21:829–835PubMedCrossRef Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK (2006) A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res 21:829–835PubMedCrossRef
7.
go back to reference Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545PubMedCrossRef Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545PubMedCrossRef
8.
go back to reference Jarvinen TL, Sievanen H, Jokihaara J, Einhorn TA (2005) Revival of bone strength: the bottom line. J Bone Miner Res 20:717–720PubMedCrossRef Jarvinen TL, Sievanen H, Jokihaara J, Einhorn TA (2005) Revival of bone strength: the bottom line. J Bone Miner Res 20:717–720PubMedCrossRef
9.
go back to reference MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM (2002) Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res 17:834–844PubMedCrossRef MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM (2002) Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res 17:834–844PubMedCrossRef
10.
go back to reference MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA (2004) Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34:755–764PubMedCrossRef MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA (2004) Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34:755–764PubMedCrossRef
11.
go back to reference MacKelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508PubMedCrossRef MacKelvie KJ, McKay HA, Khan KM, Crocker PR (2001) A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr 139:501–508PubMedCrossRef
12.
go back to reference Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMedCrossRef Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372PubMedCrossRef
13.
go back to reference MacKelvie KJ, Khan K, Petit MA, Janssen PA, McKay HA (2003) A school-based exercise intervention elicits substantial bone health benefits: A 2-year randomized controlled trial in girls. Pediatrics 112:e447–e452PubMedCrossRef MacKelvie KJ, Khan K, Petit MA, Janssen PA, McKay HA (2003) A school-based exercise intervention elicits substantial bone health benefits: A 2-year randomized controlled trial in girls. Pediatrics 112:e447–e452PubMedCrossRef
14.
go back to reference Naylor PJ, Macdonald HM, Zebedee JA, Reed KE, McKay HA (2006) Lessons learned from Action Schools! BC-An ‘active school’ model to promote physical activity in elementary schools. J Sci Med Sport 9:413–423PubMedCrossRef Naylor PJ, Macdonald HM, Zebedee JA, Reed KE, McKay HA (2006) Lessons learned from Action Schools! BC-An ‘active school’ model to promote physical activity in elementary schools. J Sci Med Sport 9:413–423PubMedCrossRef
15.
go back to reference Macdonald HM, Kontulainen SA, Khan KM, McKay HA (2007) Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res 22:434–446PubMedCrossRef Macdonald HM, Kontulainen SA, Khan KM, McKay HA (2007) Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res 22:434–446PubMedCrossRef
16.
go back to reference McKay HA, MacLean L, Petit M, MacKelvie-O’Brien K, Janssen P, Beck T, Khan KM (2005) “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med 39:521–526PubMedCrossRef McKay HA, MacLean L, Petit M, MacKelvie-O’Brien K, Janssen P, Beck T, Khan KM (2005) “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med 39:521–526PubMedCrossRef
17.
go back to reference Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12:1480–1485PubMedCrossRef Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12:1480–1485PubMedCrossRef
18.
go back to reference Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204:3389–3399PubMed Robling AG, Burr DB, Turner CH (2001) Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol 204:3389–3399PubMed
19.
go back to reference Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 93:1345–1348PubMed Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 93:1345–1348PubMed
22.
go back to reference Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34:689–694PubMedCrossRef Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34:689–694PubMedCrossRef
23.
go back to reference Tanner JM (1978) Foetus into man. Harvard Press, Cambridge Tanner JM (1978) Foetus into man. Harvard Press, Cambridge
24.
go back to reference Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R (1997) Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc 29:1344–1349PubMed Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R (1997) Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc 29:1344–1349PubMed
25.
go back to reference Kowalski KC, Crocker PR, Faulkner RA (1997) Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci 9:174–186 Kowalski KC, Crocker PR, Faulkner RA (1997) Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci 9:174–186
26.
go back to reference MacKelvie KJ, McKay HA, Khan KM, Crocker PR (2001) Lifestyle risk factors for osteoporosis in Asian and Caucasian girls. Med Sci Sports Exerc 33:1818–1824PubMedCrossRef MacKelvie KJ, McKay HA, Khan KM, Crocker PR (2001) Lifestyle risk factors for osteoporosis in Asian and Caucasian girls. Med Sci Sports Exerc 33:1818–1824PubMedCrossRef
27.
go back to reference Barr SI (1994) Associations of social and demographic variables with calcium intakes of high school students. J Am Diet Assoc 94:260–266PubMedCrossRef Barr SI (1994) Associations of social and demographic variables with calcium intakes of high school students. J Am Diet Assoc 94:260–266PubMedCrossRef
28.
go back to reference Hologic (2000) Hologic QDR series user’s guide. Hologic, Inc, Bedford, MA Hologic (2000) Hologic QDR series user’s guide. Hologic, Inc, Bedford, MA
29.
go back to reference Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18PubMedCrossRef Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18PubMedCrossRef
30.
go back to reference Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121PubMedCrossRef Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121PubMedCrossRef
31.
go back to reference Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res 14:1672–1679PubMedCrossRef Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res 14:1672–1679PubMedCrossRef
32.
go back to reference Kerry SM, Bland JM (1998) The intracluster correlation coefficient in cluster randomisation. BMJ 316:1455PubMed Kerry SM, Bland JM (1998) The intracluster correlation coefficient in cluster randomisation. BMJ 316:1455PubMed
33.
go back to reference Wears RL (2002) Advanced statistics: statistical methods for analyzing cluster and cluster-randomized data. Acad Emerg Med 9:330–341PubMedCrossRef Wears RL (2002) Advanced statistics: statistical methods for analyzing cluster and cluster-randomized data. Acad Emerg Med 9:330–341PubMedCrossRef
34.
go back to reference Donner A, Klar N (2000) Design and analysis of cluster randomized trials in health research. Arnold Publishers, London Donner A, Klar N (2000) Design and analysis of cluster randomized trials in health research. Arnold Publishers, London
35.
go back to reference Fox KR, Cooper A, McKenna J (2004) The school and promotion of children’s health-enhancing physical activity: Perspectives from the United Kingdom. J Sch Health 23:338–358 Fox KR, Cooper A, McKenna J (2004) The school and promotion of children’s health-enhancing physical activity: Perspectives from the United Kingdom. J Sch Health 23:338–358
36.
go back to reference Hannan PJ, French SA, Himes JH, Fulkerson JA, Story M (2004) The review process fails to require appropriate statistical analysis of a group-randomized trial. Pediatrics 114:509–511PubMedCrossRef Hannan PJ, French SA, Himes JH, Fulkerson JA, Story M (2004) The review process fails to require appropriate statistical analysis of a group-randomized trial. Pediatrics 114:509–511PubMedCrossRef
37.
go back to reference McKay H, Tsang G, Heinonen A, MacKelvie K, Sanderson D, Khan KM (2005) Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med 39:10–14PubMedCrossRef McKay H, Tsang G, Heinonen A, MacKelvie K, Sanderson D, Khan KM (2005) Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med 39:10–14PubMedCrossRef
38.
go back to reference Engsberg JR, Lee AG, Tedford KG, Harder JA (1993) Normative ground reaction force data for able-bodied and trans-tibial amputee children during running. Prosthet Orthot Int 17:83–89PubMed Engsberg JR, Lee AG, Tedford KG, Harder JA (1993) Normative ground reaction force data for able-bodied and trans-tibial amputee children during running. Prosthet Orthot Int 17:83–89PubMed
39.
go back to reference Pittenger VM, McCaw ST, Thomas DQ (2002) Vertical ground reaction forces of children during one- and two-leg rope jumping. Res Q Exerc Sport 73:445–449PubMed Pittenger VM, McCaw ST, Thomas DQ (2002) Vertical ground reaction forces of children during one- and two-leg rope jumping. Res Q Exerc Sport 73:445–449PubMed
40.
go back to reference Milgrom C, Miligram M, Simkin A, Burr D, Ekenman I, Finestone A (2001) A home exercise program for tibial bone strengthening based on in vivo strain measurements. Am J Phys Med Rehabil 80:433–438PubMedCrossRef Milgrom C, Miligram M, Simkin A, Burr D, Ekenman I, Finestone A (2001) A home exercise program for tibial bone strengthening based on in vivo strain measurements. Am J Phys Med Rehabil 80:433–438PubMedCrossRef
41.
go back to reference Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804PubMedCrossRef Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest 104:795–804PubMedCrossRef
42.
go back to reference Bradney M, Karlsson MK, Duan Y, Stuckey S, Bass S, Seeman E (2000) Heterogeneity in the growth of the axial and appendicular skeleton in boys: implications for the pathogenesis of bone fragility in men. J Bone Miner Res 15:1871–1878PubMedCrossRef Bradney M, Karlsson MK, Duan Y, Stuckey S, Bass S, Seeman E (2000) Heterogeneity in the growth of the axial and appendicular skeleton in boys: implications for the pathogenesis of bone fragility in men. J Bone Miner Res 15:1871–1878PubMedCrossRef
43.
go back to reference Beck T (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14(Suppl 5):81–88CrossRef Beck T (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14(Suppl 5):81–88CrossRef
44.
go back to reference Forwood MR, Baxter-Jones AD, Beck TJ, Mirwald RL, Howard A, Bailey DA (2006) Physical activity and strength of the femoral neck during the adolescent growth spurt: A longitudinal analysis. Bone 38:576–583PubMedCrossRef Forwood MR, Baxter-Jones AD, Beck TJ, Mirwald RL, Howard A, Bailey DA (2006) Physical activity and strength of the femoral neck during the adolescent growth spurt: A longitudinal analysis. Bone 38:576–583PubMedCrossRef
Metadata
Title
Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children?
Authors
H. M. Macdonald
S. A. Kontulainen
M. A. Petit
T. J. Beck
K. M. Khan
H. A. McKay
Publication date
01-10-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 10/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-008-0589-z

Other articles of this Issue 10/2008

Osteoporosis International 10/2008 Go to the issue