Skip to main content
Top
Published in: Osteoporosis International 2/2008

01-02-2008 | Review

Skeletal consequences of thiazolidinedione therapy

Author: A. Grey

Published in: Osteoporosis International | Issue 2/2008

Login to get access

Abstract

Thiazolidinediones (TZDs) are agonists of the peroxisome proliferator-activated receptor gamma (PPARγ) nuclear transcription factor. Two members of this drug class, rosiglitazone and pioglitazone, are commonly used in the management of type II diabetes mellitus, and play emerging roles in the treatment of other clinical conditions characterized by insulin resistance. Over the past decade, a consistent body of in vitro and animal studies has demonstrated that PPARγ signaling regulates the fate of pluripotent mesenchymal cells, favoring adipogenesis over osteoblastogenesis. Treatment of rodents with TZDs decreases bone formation and bone mass. Until recently, there were no bone-related data available from studies of TZDs in humans. In the past year, however, several clinical studies have reported adverse skeletal actions of TZDs in humans. Collectively, these investigations have demonstrated that the TZDs currently in clinical use decrease bone formation and accelerate bone loss in healthy and insulin-resistant individuals, and increase the risk of fractures in the appendicular skeleton in women with type II diabetes mellitus. These observations should prompt clinicians to evaluate fracture risk in patients for whom TZD therapy is being considered, and initiate skeletal protection in at-risk individuals.
Literature
1.
3.
4.
go back to reference Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRef Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRef
5.
go back to reference Stout DL, Fugate SE (2005) Thiazolidinediones for treatment of polycystic ovary syndrome. Pharmacotherapy 25:244–252PubMedCrossRef Stout DL, Fugate SE (2005) Thiazolidinediones for treatment of polycystic ovary syndrome. Pharmacotherapy 25:244–252PubMedCrossRef
6.
go back to reference Dream Trial Investigators (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105CrossRef Dream Trial Investigators (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105CrossRef
7.
go back to reference Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef
8.
9.
go back to reference [no authors listed] (2007) Rosiglitazone: seeking a balanced perspective. Lancet 369:1834 [no authors listed] (2007) Rosiglitazone: seeking a balanced perspective. Lancet 369:1834
11.
go back to reference Home PD, Pocock SJ, Beck-Nielsen H et al (2007) Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 357:28–38PubMedCrossRef Home PD, Pocock SJ, Beck-Nielsen H et al (2007) Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 357:28–38PubMedCrossRef
12.
go back to reference Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef
13.
go back to reference Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef
14.
go back to reference Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, and Body Composition study. Arch Intern Med 165:1612–1617PubMedCrossRef Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, and Body Composition study. Arch Intern Med 165:1612–1617PubMedCrossRef
15.
go back to reference Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197PubMedCrossRef Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197PubMedCrossRef
16.
go back to reference Schwartz AV, Sellmeyer DE, Ensrud KE et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38PubMedCrossRef Schwartz AV, Sellmeyer DE, Ensrud KE et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38PubMedCrossRef
17.
go back to reference Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410PubMedCrossRef Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410PubMedCrossRef
18.
go back to reference Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299PubMedCrossRef Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299PubMedCrossRef
19.
go back to reference Ivers RQ, Cumming RG, Mitchell P et al (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203PubMedCrossRef Ivers RQ, Cumming RG, Mitchell P et al (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203PubMedCrossRef
20.
go back to reference Ahmed LA, Joakimsen RM, Berntsen GK et al (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef Ahmed LA, Joakimsen RM, Berntsen GK et al (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef
21.
go back to reference Miao J, Brismar K, Nyren O et al (2005) Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28:2850–2855PubMedCrossRef Miao J, Brismar K, Nyren O et al (2005) Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28:2850–2855PubMedCrossRef
22.
go back to reference Whiteside GT, Boulet JM, Sellers R et al (2006) Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 38:387–393PubMedCrossRef Whiteside GT, Boulet JM, Sellers R et al (2006) Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 38:387–393PubMedCrossRef
23.
go back to reference Cundy TF, Edmonds ME, Watkins PJ (1985) Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 2:461–464PubMedCrossRef Cundy TF, Edmonds ME, Watkins PJ (1985) Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 2:461–464PubMedCrossRef
24.
go back to reference Zhou Z, Immel D, Xi C-X et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080PubMedCrossRef Zhou Z, Immel D, Xi C-X et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080PubMedCrossRef
25.
go back to reference Katayama Y, Akatsu T, Yamamoto M et al (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937PubMedCrossRef Katayama Y, Akatsu T, Yamamoto M et al (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937PubMedCrossRef
26.
go back to reference Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270PubMed Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270PubMed
27.
go back to reference Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094PubMed Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094PubMed
28.
go back to reference Johnson TE, Vogel R, Rutledge SJ et al (1999) Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells. Endocrinology 140:3245–3254PubMedCrossRef Johnson TE, Vogel R, Rutledge SJ et al (1999) Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells. Endocrinology 140:3245–3254PubMedCrossRef
29.
go back to reference Jeon MJ, Kim JA, Kwon SH et al (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277PubMedCrossRef Jeon MJ, Kim JA, Kwon SH et al (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277PubMedCrossRef
30.
go back to reference Jackson SM, Demer LL (2000) Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett 471:119–124PubMedCrossRef Jackson SM, Demer LL (2000) Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett 471:119–124PubMedCrossRef
31.
go back to reference Diascro DD, Vogel RL, Johnson TE et al (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRef Diascro DD, Vogel RL, Johnson TE et al (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRef
32.
go back to reference Nuttall ME, Patton AJ, Olivera DL et al (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMedCrossRef Nuttall ME, Patton AJ, Olivera DL et al (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMedCrossRef
33.
go back to reference Mbalaviele G, Abu-Amer Y, Meng A et al (2000) Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 275:14388–14393PubMedCrossRef Mbalaviele G, Abu-Amer Y, Meng A et al (2000) Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 275:14388–14393PubMedCrossRef
34.
go back to reference Chan BY, Gartland A, Wilson PJM et al (2007) PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40:149–159PubMedCrossRef Chan BY, Gartland A, Wilson PJM et al (2007) PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40:149–159PubMedCrossRef
35.
go back to reference Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74:357–371PubMedCrossRef Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74:357–371PubMedCrossRef
36.
go back to reference Khan E, Abu-Amer Y (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. J Lab Clin Med 142:29–34PubMedCrossRef Khan E, Abu-Amer Y (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. J Lab Clin Med 142:29–34PubMedCrossRef
37.
go back to reference Kawaguchi H, Akune T, Yamaguchi M et al (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279PubMedCrossRef Kawaguchi H, Akune T, Yamaguchi M et al (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279PubMedCrossRef
38.
go back to reference Lecka-Czernik B, Moerman EJ, Grant DF et al (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384PubMedCrossRef Lecka-Czernik B, Moerman EJ, Grant DF et al (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384PubMedCrossRef
39.
go back to reference Kim SH, Yoo CI, Kim HT et al (2006) Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol 215:198–207PubMedCrossRef Kim SH, Yoo CI, Kim HT et al (2006) Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol 215:198–207PubMedCrossRef
40.
go back to reference Okazaki R, Toriumi M, Fukumoto S et al (1999) Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 140:5060–5065PubMedCrossRef Okazaki R, Toriumi M, Fukumoto S et al (1999) Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 140:5060–5065PubMedCrossRef
41.
go back to reference Reid IR, Cornish J, Baldock PA (2006) Nutrition-related peptides and bone homeostasis. J Bone Miner Res 21:495–500PubMedCrossRef Reid IR, Cornish J, Baldock PA (2006) Nutrition-related peptides and bone homeostasis. J Bone Miner Res 21:495–500PubMedCrossRef
42.
go back to reference Fain JN, Cowan GS Jr, Buffington C et al (2000) Regulation of leptin release by troglitazone in human adipose tissue. Metabolism 49:1485–1490PubMedCrossRef Fain JN, Cowan GS Jr, Buffington C et al (2000) Regulation of leptin release by troglitazone in human adipose tissue. Metabolism 49:1485–1490PubMedCrossRef
43.
go back to reference Williams LB, Fawcett RL, Waechter AS et al (2000) Leptin production in adipocytes from morbidly obese subjects: stimulation by dexamethasone, inhibition with troglitazone, and influence of gender. J Clin Endocrinol Metab 85:2678–2684PubMedCrossRef Williams LB, Fawcett RL, Waechter AS et al (2000) Leptin production in adipocytes from morbidly obese subjects: stimulation by dexamethasone, inhibition with troglitazone, and influence of gender. J Clin Endocrinol Metab 85:2678–2684PubMedCrossRef
44.
go back to reference Cornish J, Callon KE, Bava U et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedCrossRef Cornish J, Callon KE, Bava U et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedCrossRef
45.
go back to reference Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRef Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRef
46.
go back to reference Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094PubMedCrossRef Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094PubMedCrossRef
47.
go back to reference Oshima K, Nampei A, Matsuda M et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526PubMedCrossRef Oshima K, Nampei A, Matsuda M et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526PubMedCrossRef
48.
go back to reference Williams GA, Callon KE, Watson M et al (2006) Adiponectin knock-out mice have increased trabecular number and bone volume at 14 weeks of age. Australia New Zealand Bone and Mineral Society, Port Douglas, QA, O28 Williams GA, Callon KE, Watson M et al (2006) Adiponectin knock-out mice have increased trabecular number and bone volume at 14 weeks of age. Australia New Zealand Bone and Mineral Society, Port Douglas, QA, O28
49.
go back to reference Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495PubMed Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495PubMed
50.
go back to reference Cornish J, Callon KE, King AR et al (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 38:E694–E699 Cornish J, Callon KE, King AR et al (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 38:E694–E699
51.
go back to reference Cornish J, Callon KE, Bava U et al (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab 292:E117–E122PubMedCrossRef Cornish J, Callon KE, Bava U et al (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab 292:E117–E122PubMedCrossRef
52.
go back to reference Lecka-Czernik B, Ackert-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911PubMedCrossRef Lecka-Czernik B, Ackert-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911PubMedCrossRef
53.
go back to reference Jennermann C, Triantafillou J, Cowan D et al (1995) Effects of thiazolidinediones on bone turnover in the rat. J Bone Miner Res 10 [Suppl 1]:S241 Jennermann C, Triantafillou J, Cowan D et al (1995) Effects of thiazolidinediones on bone turnover in the rat. J Bone Miner Res 10 [Suppl 1]:S241
54.
go back to reference Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef
55.
go back to reference Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235PubMedCrossRef Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235PubMedCrossRef
56.
go back to reference Soroceanu MA, Miao D, Bai X-Y et al (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183:203–216PubMedCrossRef Soroceanu MA, Miao D, Bai X-Y et al (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183:203–216PubMedCrossRef
57.
go back to reference Li M, Pan LC, Simmons HA et al (2006) Surface-specific effects of a PPAR-gamma agonist, darglitazone, on bone in mice. Bone 39:796–806PubMedCrossRef Li M, Pan LC, Simmons HA et al (2006) Surface-specific effects of a PPAR-gamma agonist, darglitazone, on bone in mice. Bone 39:796–806PubMedCrossRef
58.
go back to reference Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84PubMedCrossRef Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84PubMedCrossRef
59.
go back to reference Tornvig L, Mosekilde LI, Justesen J et al (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef Tornvig L, Mosekilde LI, Justesen J et al (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef
60.
go back to reference Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337PubMedCrossRef Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337PubMedCrossRef
61.
go back to reference Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRef Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRef
62.
go back to reference Akune T, Ohba S, Kamekura S et al (2004) PPAR-gamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCrossRef Akune T, Ohba S, Kamekura S et al (2004) PPAR-gamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCrossRef
63.
go back to reference Klein RF, Allard J, Avnur Z et al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232PubMedCrossRef Klein RF, Allard J, Avnur Z et al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232PubMedCrossRef
64.
go back to reference Okazaki R, Miura M, Toriumi M et al (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46:795–801PubMed Okazaki R, Miura M, Toriumi M et al (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46:795–801PubMed
65.
go back to reference Watanabe S, Takeuchi Y, Fukumoto S et al (2003) Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab 21:166–171PubMedCrossRef Watanabe S, Takeuchi Y, Fukumoto S et al (2003) Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab 21:166–171PubMedCrossRef
66.
go back to reference Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRef Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRef
67.
go back to reference Yaturu S, Bryant B, Jain SK (2007) Thiazolidinediones treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576PubMedCrossRef Yaturu S, Bryant B, Jain SK (2007) Thiazolidinediones treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576PubMedCrossRef
68.
go back to reference Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310PubMedCrossRef Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310PubMedCrossRef
69.
go back to reference Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530PubMedCrossRef Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530PubMedCrossRef
70.
go back to reference Ton FN, Gunawardene SC, Lee H et al (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470PubMedCrossRef Ton FN, Gunawardene SC, Lee H et al (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470PubMedCrossRef
71.
go back to reference Sanders KM, Seeman E, Ugoni AM et al (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10:240–247PubMedCrossRef Sanders KM, Seeman E, Ugoni AM et al (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10:240–247PubMedCrossRef
72.
go back to reference Garraway WM, Stauffer RN, Kurland LT et al (1979) Limb fractures in a defined population. I. Frequency and distribution. Mayo Clin Proc 54:701–707PubMed Garraway WM, Stauffer RN, Kurland LT et al (1979) Limb fractures in a defined population. I. Frequency and distribution. Mayo Clin Proc 54:701–707PubMed
75.
go back to reference Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299PubMedCrossRef Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299PubMedCrossRef
76.
go back to reference Adachi JD, Saag KG, Delmas PD et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211PubMedCrossRef Adachi JD, Saag KG, Delmas PD et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211PubMedCrossRef
77.
go back to reference Grey AB, Cundy TF, Reid IR (1994) Continuous combined oestrogen/progestin therapy is well tolerated and increases bone density at the hip and spine in post-menopausal osteoporosis. Clin Endocrinol (Oxf) 40:671–677 Grey AB, Cundy TF, Reid IR (1994) Continuous combined oestrogen/progestin therapy is well tolerated and increases bone density at the hip and spine in post-menopausal osteoporosis. Clin Endocrinol (Oxf) 40:671–677
78.
go back to reference National Osteoporosis Foundation (2003) Physician’s guide to prevention and treatment of osteoporosis. In. National Osteoporosis Foundation, Washington, DC National Osteoporosis Foundation (2003) Physician’s guide to prevention and treatment of osteoporosis. In. National Osteoporosis Foundation, Washington, DC
79.
go back to reference American Association of Clinical Endocrinologists (2003) Medical guidelines for clinical practice for the prevention and treatment of postmenopausal osteoporosis. Endocr Pract 9:544–564 American Association of Clinical Endocrinologists (2003) Medical guidelines for clinical practice for the prevention and treatment of postmenopausal osteoporosis. Endocr Pract 9:544–564
Metadata
Title
Skeletal consequences of thiazolidinedione therapy
Author
A. Grey
Publication date
01-02-2008
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 2/2008
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0477-y

Other articles of this Issue 2/2008

Osteoporosis International 2/2008 Go to the issue