Skip to main content
Top
Published in: Osteoporosis International 11/2003

01-11-2003 | Original Article

Clinical utility of dual-energy vertebral assessment (DVA)

Authors: Tamara J. Vokes, Larry B. Dixon, Murray J. Favus

Published in: Osteoporosis International | Issue 11/2003

Login to get access

Abstract

The current study was undertaken to evaluate the clinical utility of DVA, a system for imaging the lateral spine on the Lunar Prodigy densitometer. DVA images were obtained and bone density of the lumbar spine and proximal femur measured in 297 subjects (272 women), aged 64±13 years. The images were classified as: normal (N) if no fractures were detected and all vertebrae between T6 and L4 were visualized, fracture (F) if any vertebra had a fracture (defined as 25% or more reduction in the vertebral height) even if some of the other vertebrae could not be visualized, and un-interpretable (U) if at least one of the vertebra between T6 and L4 could not be classified and no fractures were detected in the visualized vertebrae. A subset of 66 patients also had standard radiographs of the thoracic and lumbar spine. Compared to radiographs, DVA had a 95% sensitivity to detect fractures and 82% specificity (to exclude them). Among all 297 subjects studied, DVAs were interpretable in 87%. They were classified as N in 204 (68%), F in 55 (19%) and U in 38 (13%). The reasons for un-interpretability were: scoliosis, scapular or rib shadow, severe arthritic changes and multiple vertebral compression fracture with severe spinal deformities. Only 11% of F subjects gave a history of a vertebral fracture, and only 56% of F subjects met the BMD criteria for osteoporosis (T score <−2.5). These results indicate that adding DVA, a low radiation and relatively low cost "point of service" procedure, to BMD measurement provides the clinician with a more comprehensive fracture risk assessment than that afforded by clinical evaluation and BMD measurement alone.
Literature
1.
go back to reference Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828PubMed Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828PubMed
2.
go back to reference Melton LJ 3rd, Atkinson EJ, Cooper C, O'Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221CrossRefPubMed Melton LJ 3rd, Atkinson EJ, Cooper C, O'Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221CrossRefPubMed
3.
go back to reference Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. Jama 285:320–323PubMed Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. Jama 285:320–323PubMed
4.
go back to reference Kotowicz MA, Melton LJ 3rd, Cooper C, Atkinson EJ, O'Fallon WM, Riggs BL (1994) Risk of hip fracture in women with vertebral fracture. J Bone Miner Res 9:599–605PubMed Kotowicz MA, Melton LJ 3rd, Cooper C, Atkinson EJ, O'Fallon WM, Riggs BL (1994) Risk of hip fracture in women with vertebral fracture. J Bone Miner Res 9:599–605PubMed
5.
go back to reference Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126PubMed Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126PubMed
6.
go back to reference Rea JA, SteigerP, Blake GM, Fogelman I (1998) Optimizing data acquisition and analysis of morphometric X-ray absorptiometry. Osteoporos Int 8:177–183PubMed Rea JA, SteigerP, Blake GM, Fogelman I (1998) Optimizing data acquisition and analysis of morphometric X-ray absorptiometry. Osteoporos Int 8:177–183PubMed
7.
go back to reference Rea JA, Steiger P, Blake GM, Potts E, Smith IG, Fogelman I (1998) Morphometric X-ray absorptiometry: reference data for vertebral dimensions. J Bone Miner Res 13:464–474PubMed Rea JA, Steiger P, Blake GM, Potts E, Smith IG, Fogelman I (1998) Morphometric X-ray absorptiometry: reference data for vertebral dimensions. J Bone Miner Res 13:464–474PubMed
8.
go back to reference Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668CrossRefPubMed Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668CrossRefPubMed
9.
go back to reference Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574PubMed Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574PubMed
10.
go back to reference Rea JA, Chen MB, Li J, Marsh E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (2001) Vertebral morphometry: a comparison of long-term precision of morphometric X-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 12:158–166CrossRefPubMed Rea JA, Chen MB, Li J, Marsh E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (2001) Vertebral morphometry: a comparison of long-term precision of morphometric X-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 12:158–166CrossRefPubMed
11.
go back to reference Rea JA, Blake GM, Fogelman I (2001) Development of a phantom for morphometric X-ray absorptiometry. Br J Radiol 74:341–350PubMed Rea JA, Blake GM, Fogelman I (2001) Development of a phantom for morphometric X-ray absorptiometry. Br J Radiol 74:341–350PubMed
12.
go back to reference Ferrar L, Jiang G, Barrington NA, Eastell R (2000) Identification of vertebral deformities in women: comparison of radiological assessment and quantitative morphometry using morphometric radiography and morphometric X-ray absorptiometry. J Bone Miner Res 15:575–585PubMed Ferrar L, Jiang G, Barrington NA, Eastell R (2000) Identification of vertebral deformities in women: comparison of radiological assessment and quantitative morphometry using morphometric radiography and morphometric X-ray absorptiometry. J Bone Miner Res 15:575–585PubMed
13.
go back to reference Ferrar L, Jiang G, Eastell R (2001) Short-term precision for morphometric X-ray absorptiometry. Osteoporos Int 12:710–715CrossRefPubMed Ferrar L, Jiang G, Eastell R (2001) Short-term precision for morphometric X-ray absorptiometry. Osteoporos Int 12:710–715CrossRefPubMed
14.
go back to reference Edmondston SJ, Singer KP, Day RE, Price RI, Breidahl PD (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7:142–148PubMed Edmondston SJ, Singer KP, Day RE, Price RI, Breidahl PD (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7:142–148PubMed
15.
go back to reference Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290PubMed Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290PubMed
16.
go back to reference Steiger P, Cummings SR, Genant HK, Weiss H (1994) Morphometric X-ray absorptiometry of the spine: correlation in vivo with morphometric radiography. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:238–244PubMed Steiger P, Cummings SR, Genant HK, Weiss H (1994) Morphometric X-ray absorptiometry of the spine: correlation in vivo with morphometric radiography. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:238–244PubMed
17.
go back to reference Lang T, Takada M, Gee R, Wu C, Li J, Hayashi-Clark C, Schoen S, March V, Genant HK (1997) A preliminary evaluation of the lunar expert-XL for bone densitometry and vertebral morphometry. J Bone Miner Res 12:136–143PubMed Lang T, Takada M, Gee R, Wu C, Li J, Hayashi-Clark C, Schoen S, March V, Genant HK (1997) A preliminary evaluation of the lunar expert-XL for bone densitometry and vertebral morphometry. J Bone Miner Res 12:136–143PubMed
18.
go back to reference Greenspan SL, von Stetten E, Emond SK, Jones L, Parker RA (2001) Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis. J Clin Densitom 4:373–380PubMed Greenspan SL, von Stetten E, Emond SK, Jones L, Parker RA (2001) Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis. J Clin Densitom 4:373–380PubMed
19.
go back to reference Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporos Int 6:233–239PubMed Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporos Int 6:233–239PubMed
20.
go back to reference Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687CrossRefPubMed Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687CrossRefPubMed
21.
go back to reference Schousboe JT, DeBold CR, Bowles C, Glickstein S, Rubino RK (2002) Prevalence of vertebral compression fracture deformity by X-ray absorptiometry of lateral thoracic and lumbar spines in a population referred for bone densitometry. J Clin Densitom 5:239–246PubMed Schousboe JT, DeBold CR, Bowles C, Glickstein S, Rubino RK (2002) Prevalence of vertebral compression fracture deformity by X-ray absorptiometry of lateral thoracic and lumbar spines in a population referred for bone densitometry. J Clin Densitom 5:239–246PubMed
Metadata
Title
Clinical utility of dual-energy vertebral assessment (DVA)
Authors
Tamara J. Vokes
Larry B. Dixon
Murray J. Favus
Publication date
01-11-2003
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 11/2003
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-003-1461-9

Other articles of this Issue 11/2003

Osteoporosis International 11/2003 Go to the issue