Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2019

01-11-2019 | KNEE

Bacterial DNA is associated with tunnel widening in failed ACL reconstructions

Authors: David C. Flanigan, Joshua S. Everhart, Alex C. DiBartola, Devendra H. Dusane, Moneer M. Abouljoud, Robert A. Magnussen, Christopher C. Kaeding, Paul Stoodley

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 11/2019

Login to get access

Abstract

Purpose

To determine if tunnel widening, defined as change in maximal tunnel diameter from the time of initial bone tunnel drilling to revision surgery is associated with bacterial deoxyribonucleic acid (DNA) presence and concentration in torn graft tissue from failed anterior cruciate ligament reconstructions (ACLRs).

Methods

Thirty-four consecutive revision ACLRs were included (mean age 27.3 years SD 10.9; median time to failure 4.9 years range 105 days–20 years). Graft selection of the failed reconstruction was 68% autograft, 26% allograft, and 6% autograft/allograft hybrid with a mean drilled tunnel diameter of 8.4 mm SD 0.8. Maximal tunnel diameters prior to revision were measured on pre-operative three-dimensional imaging and compared to drilled tunnel diameters at the time of the previous reconstruction. Tissue biopsies of the failed graft were obtained from tibial, femoral, and intraarticular segments. Sterile water left open to air during revision ACLRs and tissue from primary ACLRs were used as negative controls. Clinical cultures were obtained on all revision ACLRs and PCR with universal bacterial primer on all cases and negative controls. Fluorescence microscopy was used to confirm the presence and location of biofilms in two patients with retrieved torn graft tissue and fixation material. Amount of tunnel widening was compared to bacterial DNA presence as well as bacterial DNA concentration via Welch ANOVA.

Results

Bacterial DNA was present in 29/34 (85%) revision ACLRs, 1/5 (20%) of primary ACLR controls and 0/3 (0%) sterile water controls. Cultures were positive (coagulase negative Staphylococcus sp.) in one case, which also had the greatest degree of tunnel widening. Femoral widening was greater in cases with detectable bacterial DNA (mean widening 2.6 mm SD 3.0) versus without (mean 0.3 mm SD 0.6) (p = 0.003) but was unaffected by bacterial DNA concentration (p = 0.44). Tibial widening was not associated with the presence of bacterial DNA (n.s.); however, higher bacterial DNA concentrations were observed in cases with tibial widening ≥ 3.0 mm (median 2.47 ng bacterial DNA/µg total DNA) versus widening < 3.0 mm (median 0.97 ng bacterial DNA/µg total DNA) (p = 0.046). Tunnel widening was not associated with time to failure, graft selection, or number of prior surgeries (n.s., all comparisons). Fluorescence microscopy confirmed the presence of biofilms on ruptured tendon graft as well as fixation material in 2/2 cases.

Conclusion

Bacterial DNA is commonly encountered on failed ACLR grafts and can form biofilms. Bacterial DNA does not cause clinically apparent infection symptoms but is associated with tunnel widening. Further research is needed to determine whether graft decontamination protocols can reduce graft bacterial colonization rates, ACLR tunnel widening or ACLR failure risk.

Level of evidence

Therapeutic III.
Literature
1.
go back to reference Amiel D, Kleiner JB, Akeson WH (1986) The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 14:449–462CrossRef Amiel D, Kleiner JB, Akeson WH (1986) The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 14:449–462CrossRef
2.
go back to reference Baumfeld JA, Diduch DR, Rubino LJ, Hart JA, Miller MD, Barr MS et al (2008) Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc 16:1108–1113CrossRef Baumfeld JA, Diduch DR, Rubino LJ, Hart JA, Miller MD, Barr MS et al (2008) Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc 16:1108–1113CrossRef
3.
go back to reference Binnet MS, Basarir K (2007) Risk and outcome of infection after different arthroscopic anterior cruciate ligament reconstruction techniques. Arthroscopy 23:862–868CrossRef Binnet MS, Basarir K (2007) Risk and outcome of infection after different arthroscopic anterior cruciate ligament reconstruction techniques. Arthroscopy 23:862–868CrossRef
4.
go back to reference Bjarnsholt T, Tolker-Nielsen T, Givskov M, Janssen M, Christensen LH (2009) Detection of bacteria by fluorescence in situ hybridization in culture-negative soft tissue filler lesions. Dermatol Surg 35(Suppl 2):1620–1624CrossRef Bjarnsholt T, Tolker-Nielsen T, Givskov M, Janssen M, Christensen LH (2009) Detection of bacteria by fluorescence in situ hybridization in culture-negative soft tissue filler lesions. Dermatol Surg 35(Suppl 2):1620–1624CrossRef
5.
go back to reference Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85CrossRef Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85CrossRef
6.
go back to reference Chhabra A, Kline AJ, Nilles KM, Harner CD (2006) Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: a comparison of the medial portal and transtibial techniques. Arthroscopy 22:1107–1112CrossRef Chhabra A, Kline AJ, Nilles KM, Harner CD (2006) Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: a comparison of the medial portal and transtibial techniques. Arthroscopy 22:1107–1112CrossRef
7.
go back to reference Clancy WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 63:1270–1284CrossRef Clancy WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 63:1270–1284CrossRef
8.
go back to reference Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L et al (2011) New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 61:133–140CrossRef Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L et al (2011) New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 61:133–140CrossRef
9.
go back to reference Crespo B, Aga C, Wilson KJ, Pomeroy SM, LaPrade RF, Engebretsen L et al (2014) Measurements of bone tunnel size in anterior cruciate ligament reconstruction: 2D versus 3D computed tomography model. J Exp Orthop 1:2CrossRef Crespo B, Aga C, Wilson KJ, Pomeroy SM, LaPrade RF, Engebretsen L et al (2014) Measurements of bone tunnel size in anterior cruciate ligament reconstruction: 2D versus 3D computed tomography model. J Exp Orthop 1:2CrossRef
10.
go back to reference Deirmengian C, Kardos K, Kilmartin P, Gulati S, Citrano P, Booth RE (2015) The alpha-defensin test for periprosthetic joint infection responds to a wide spectrum of organisms. Clin Orthop Relat Res 473:2229–2235CrossRef Deirmengian C, Kardos K, Kilmartin P, Gulati S, Citrano P, Booth RE (2015) The alpha-defensin test for periprosthetic joint infection responds to a wide spectrum of organisms. Clin Orthop Relat Res 473:2229–2235CrossRef
11.
go back to reference Erickson BJ, Cvetanovich G, Waliullah K, Khair M, Smith P, Bach B et al (2016) Two-stage revision anterior cruciate ligament reconstruction. Orthopedics 39:e456–e464CrossRef Erickson BJ, Cvetanovich G, Waliullah K, Khair M, Smith P, Bach B et al (2016) Two-stage revision anterior cruciate ligament reconstruction. Orthopedics 39:e456–e464CrossRef
12.
go back to reference Everhart JS, DiBartola AC, Dusane DH, Magnussen RA, Kaeding CC, Stoodley P et al (2018) Bacterial deoxyribonucleic acid is often present in failed revision anterior cruciate ligament reconstructions. Arthroscopy 34:3046–3052CrossRef Everhart JS, DiBartola AC, Dusane DH, Magnussen RA, Kaeding CC, Stoodley P et al (2018) Bacterial deoxyribonucleic acid is often present in failed revision anterior cruciate ligament reconstructions. Arthroscopy 34:3046–3052CrossRef
13.
go back to reference Hiller NL, Chauhan A, Palmer M, Jain S, Sotereanos NG, Altman GT et al (2015) Presence of bacteria in failed anterior cruciate ligament reconstructions. Springerplus 4:460CrossRef Hiller NL, Chauhan A, Palmer M, Jain S, Sotereanos NG, Altman GT et al (2015) Presence of bacteria in failed anterior cruciate ligament reconstructions. Springerplus 4:460CrossRef
14.
go back to reference Hou C, Gupta A, Chen M, Matsen FA (2015) How do revised shoulders that are culture positive for Propionibacterium differ from those that are not? J Shoulder Elbow Surg 24:1427–1432CrossRef Hou C, Gupta A, Chen M, Matsen FA (2015) How do revised shoulders that are culture positive for Propionibacterium differ from those that are not? J Shoulder Elbow Surg 24:1427–1432CrossRef
15.
go back to reference Judd D, Bottoni C, Kim D, Burke M, Hooker S (2006) Infections following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 22:375–384CrossRef Judd D, Bottoni C, Kim D, Burke M, Hooker S (2006) Infections following arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 22:375–384CrossRef
16.
go back to reference Ketonis C, Barr S, Adams CS, Hickok NJ, Parvizi J (2010) Bacterial colonization of bone allografts: establishment and effects of antibiotics. Clin Orthop Relat Res 468:2113–2121CrossRef Ketonis C, Barr S, Adams CS, Hickok NJ, Parvizi J (2010) Bacterial colonization of bone allografts: establishment and effects of antibiotics. Clin Orthop Relat Res 468:2113–2121CrossRef
17.
go back to reference Klein JP, Lintner DM, Downs D, Vavrenka K (2003) The incidence and significance of femoral tunnel widening after quadrupled hamstring anterior cruciate ligament reconstruction using femoral cross pin fixation. Arthroscopy 19:470–476CrossRef Klein JP, Lintner DM, Downs D, Vavrenka K (2003) The incidence and significance of femoral tunnel widening after quadrupled hamstring anterior cruciate ligament reconstruction using femoral cross pin fixation. Arthroscopy 19:470–476CrossRef
18.
go back to reference Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, New York, pp 125–175 Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, New York, pp 125–175
19.
go back to reference Millett PJ, Yen YM, Price CS, Horan MP, van der Meijden OA, Elser F (2011) Propionibacterium acnes infection as an occult cause of postoperative shoulder pain: a case series. Clin Orthop Relat Res 469:2824–2830CrossRef Millett PJ, Yen YM, Price CS, Horan MP, van der Meijden OA, Elser F (2011) Propionibacterium acnes infection as an occult cause of postoperative shoulder pain: a case series. Clin Orthop Relat Res 469:2824–2830CrossRef
20.
go back to reference Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172CrossRef Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172CrossRef
21.
go back to reference Patel R (2005) Biofilms and Antimicrobial Resistance. Clin Orthop Relat Res 437:41–47CrossRef Patel R (2005) Biofilms and Antimicrobial Resistance. Clin Orthop Relat Res 437:41–47CrossRef
22.
go back to reference Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298CrossRef Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298CrossRef
23.
go back to reference Peyrache MD, Djian P, Christel P, Witvoet J (1996) Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 4:2–8CrossRef Peyrache MD, Djian P, Christel P, Witvoet J (1996) Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patellar tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 4:2–8CrossRef
24.
go back to reference Schollin-Borg M, Michaelsson K, Rahme H (2003) Presentation, outcome, and cause of septic arthritis after anterior cruciate ligament reconstruction: a case control study. Arthroscopy 19:941–947CrossRef Schollin-Borg M, Michaelsson K, Rahme H (2003) Presentation, outcome, and cause of septic arthritis after anterior cruciate ligament reconstruction: a case control study. Arthroscopy 19:941–947CrossRef
26.
go back to reference Taketomi S, Inui H, Tahara K, Shirakawa N, Tanaka S, Nakagawa T (2017) Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Arch Orthop Trauma Surg 137:1285–1291CrossRef Taketomi S, Inui H, Tahara K, Shirakawa N, Tanaka S, Nakagawa T (2017) Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft. Arch Orthop Trauma Surg 137:1285–1291CrossRef
27.
go back to reference Valle J, Solano C, García B, Toledo-Arana A, Lasa I (2013) Biofilm switch and immune response determinants at early stages of infection. Trends Microbiol 21:364–371CrossRef Valle J, Solano C, García B, Toledo-Arana A, Lasa I (2013) Biofilm switch and immune response determinants at early stages of infection. Trends Microbiol 21:364–371CrossRef
28.
go back to reference Vergis A, Gillquist J (1995) Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy 11:312–321CrossRef Vergis A, Gillquist J (1995) Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy 11:312–321CrossRef
29.
go back to reference Weber AE, Delos D, Oltean HN, Vadasdi K, Cavanaugh J, Potter HG et al (2015) Tibial and femoral tunnel changes after ACL reconstruction: a prospective 2-year longitudinal MRI study. Am J Sports Med 43:1147–1156CrossRef Weber AE, Delos D, Oltean HN, Vadasdi K, Cavanaugh J, Potter HG et al (2015) Tibial and femoral tunnel changes after ACL reconstruction: a prospective 2-year longitudinal MRI study. Am J Sports Med 43:1147–1156CrossRef
30.
go back to reference Weiler A, Hoffmann RF, Bail HJ, Rehm O, Südkamp NP (2002) Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124–135CrossRef Weiler A, Hoffmann RF, Bail HJ, Rehm O, Südkamp NP (2002) Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124–135CrossRef
Metadata
Title
Bacterial DNA is associated with tunnel widening in failed ACL reconstructions
Authors
David C. Flanigan
Joshua S. Everhart
Alex C. DiBartola
Devendra H. Dusane
Moneer M. Abouljoud
Robert A. Magnussen
Christopher C. Kaeding
Paul Stoodley
Publication date
01-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 11/2019
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-019-05405-6

Other articles of this Issue 11/2019

Knee Surgery, Sports Traumatology, Arthroscopy 11/2019 Go to the issue