Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 2/2017

01-02-2017 | Sports Traumatology

Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics

Authors: Patrick Garfjeld Roberts, Paul Guyver, Mathew Baldwin, Kash Akhtar, Abtin Alvand, Andrew J. Price, Jonathan L. Rees

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 2/2017

Login to get access

Abstract

Purpose

To assess the construct and face validity of ArthroS, a passive haptic VR simulator. A secondary aim was to evaluate the novel performance metrics produced by this simulator.

Methods

Two groups of 30 participants, each divided into novice, intermediate or expert based on arthroscopic experience, completed three separate tasks on either the knee or shoulder module of the simulator. Performance was recorded using 12 automatically generated performance metrics and video footage of the arthroscopic procedures. The videos were blindly assessed using a validated global rating scale (GRS). Participants completed a survey about the simulator’s realism and training utility.

Results

This new simulator demonstrated construct validity of its tasks when evaluated against a GRS (p ≤ 0.003 in all cases). Regarding it’s automatically generated performance metrics, established outputs such as time taken (p ≤ 0.001) and instrument path length (p ≤ 0.007) also demonstrated good construct validity. However, two-thirds of the proposed ‘novel metrics’ the simulator reports could not distinguish participants based on arthroscopic experience. Face validity assessment rated the simulator as a realistic and useful tool for trainees, but the passive haptic feedback (a key feature of this simulator) is rated as less realistic.

Conclusion

The ArthroS simulator has good task construct validity based on established objective outputs, but some of the novel performance metrics could not distinguish between surgical experience. The passive haptic feedback of the simulator also needs improvement. If simulators could offer automated and validated performance feedback, this would facilitate improvements in the delivery of training by allowing trainees to practise and self-assess.
Literature
1.
go back to reference Aggarwal R, Tully A, Grantcharov T, Larsen CR, Miskry T, Farthing A, Darzi A (2006) Virtual reality simulation training can improve technical skills during laparoscopic salpingectomy for ectopic pregnancy. Br J Obstet Gynaec 113:1382–1387CrossRef Aggarwal R, Tully A, Grantcharov T, Larsen CR, Miskry T, Farthing A, Darzi A (2006) Virtual reality simulation training can improve technical skills during laparoscopic salpingectomy for ectopic pregnancy. Br J Obstet Gynaec 113:1382–1387CrossRef
2.
go back to reference Akhtar K, Standfield NJ, Gupte CM, Tuijthof GJM (2015) Chapter 7: Virtual reality simulators. In: Karahan M, Kerkhoffs GMMJ, Randelli P, Tuijthof GJM (eds) Effective training in arthroscopic skills, 1st edn. Springer, Berlin, pp 71–80 Akhtar K, Standfield NJ, Gupte CM, Tuijthof GJM (2015) Chapter 7: Virtual reality simulators. In: Karahan M, Kerkhoffs GMMJ, Randelli P, Tuijthof GJM (eds) Effective training in arthroscopic skills, 1st edn. Springer, Berlin, pp 71–80
3.
go back to reference Alvand A, Auplish S, Khan T, Gill HS, Rees JL (2011) Identifying orthopaedic surgeons of the future: the inability of some medical students to achieve competence in basic arthroscopic tasks despite training: a randomised study. J Bone Joint Surg Br 93:1586–1591CrossRefPubMed Alvand A, Auplish S, Khan T, Gill HS, Rees JL (2011) Identifying orthopaedic surgeons of the future: the inability of some medical students to achieve competence in basic arthroscopic tasks despite training: a randomised study. J Bone Joint Surg Br 93:1586–1591CrossRefPubMed
5.
go back to reference Angelo RL, Ryu RKN, Pedowitz RA, Gallagher AG (2015) Metric development for an arthroscopic Bankart procedure: assessment of face and content validity. Arthroscopy 31:1430–1440CrossRefPubMed Angelo RL, Ryu RKN, Pedowitz RA, Gallagher AG (2015) Metric development for an arthroscopic Bankart procedure: assessment of face and content validity. Arthroscopy 31:1430–1440CrossRefPubMed
7.
go back to reference Brown D (2013) The role of simulation in the learning of surgical skills. Ann R Coll Surg Eng (Suppl) 95:292–295CrossRef Brown D (2013) The role of simulation in the learning of surgical skills. Ann R Coll Surg Eng (Suppl) 95:292–295CrossRef
8.
go back to reference Cannon WD, Nicandri GT, Reinig K, Mevis H, Wittstein J (2014) Evaluation of skill level between trainees and community orthopaedic surgeons using a virtual reality arthroscopic knee simulator. J Bone Joint Surg Am 96:e57. doi:10.2106/JBJS.M.00779 CrossRefPubMed Cannon WD, Nicandri GT, Reinig K, Mevis H, Wittstein J (2014) Evaluation of skill level between trainees and community orthopaedic surgeons using a virtual reality arthroscopic knee simulator. J Bone Joint Surg Am 96:e57. doi:10.​2106/​JBJS.​M.​00779 CrossRefPubMed
9.
go back to reference Coughlin RP, Pauyo T, Sutton JC, Coughlin LP, Bergeron SG (2015) A validated orthopaedic surgical simulation model for training and evaluation of basic arthroscopic skills. J Bone Joint Surg Am 97:1465–1471CrossRefPubMed Coughlin RP, Pauyo T, Sutton JC, Coughlin LP, Bergeron SG (2015) A validated orthopaedic surgical simulation model for training and evaluation of basic arthroscopic skills. J Bone Joint Surg Am 97:1465–1471CrossRefPubMed
10.
go back to reference Darzi A, Smith S, Taffinder N (1999) Assessing operative skill: needs to become more objective. Br Med J 318:887–888CrossRef Darzi A, Smith S, Taffinder N (1999) Assessing operative skill: needs to become more objective. Br Med J 318:887–888CrossRef
11.
go back to reference Datta V, Mackay S, Mandalia M, Darzi A (2001) The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg 193:479–485CrossRefPubMed Datta V, Mackay S, Mandalia M, Darzi A (2001) The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg 193:479–485CrossRefPubMed
12.
go back to reference Ferguson JY, Alvand A, Price AJ, Rees JL (2015) Chapter 8: Theory on simulator validation. In: Karahan M, Kerkhoffs GMMJ, Randelli P, Tuijthof GJM (eds) Effective training in arthroscopic skills, 1st edn. Springer, Berlin, pp 81–94 Ferguson JY, Alvand A, Price AJ, Rees JL (2015) Chapter 8: Theory on simulator validation. In: Karahan M, Kerkhoffs GMMJ, Randelli P, Tuijthof GJM (eds) Effective training in arthroscopic skills, 1st edn. Springer, Berlin, pp 81–94
13.
go back to reference Fucentese SF, Rahm S, Wieser K, Spillmann J, Harders M, Koch PP (2015) Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy. Knee Surg Sports Traumatol Arthrosc 23:1077–1085CrossRefPubMed Fucentese SF, Rahm S, Wieser K, Spillmann J, Harders M, Koch PP (2015) Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy. Knee Surg Sports Traumatol Arthrosc 23:1077–1085CrossRefPubMed
14.
go back to reference Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF (2014) Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg 9:1–9. doi:10.1007/s11548-013-0905-8 CrossRefPubMed Gélinas-Phaneuf N, Choudhury N, Al-Habib AR, Cabral A, Nadeau E, Mora V, Pazos V, Debergue P, DiRaddo R, Del Maestro RF (2014) Assessing performance in brain tumor resection using a novel virtual reality simulator. Int J Comput Assist Radiol Surg 9:1–9. doi:10.​1007/​s11548-013-0905-8 CrossRefPubMed
16.
go back to reference Howells NR, Brinsden MD, Gill RS, Carr AJ, Rees JL (2008) Motion analysis: a validated method for showing skill levels in arthroscopy. Arthroscopy 24:335–342CrossRefPubMed Howells NR, Brinsden MD, Gill RS, Carr AJ, Rees JL (2008) Motion analysis: a validated method for showing skill levels in arthroscopy. Arthroscopy 24:335–342CrossRefPubMed
17.
go back to reference Howells NR, Gill HS, Carr AJ, Price AJ, Rees JL (2008) Transferring simulated arthroscopic skills to the operating theatre: a randomised blinded study. J Bone Joint Surg Br 90:494–499CrossRefPubMed Howells NR, Gill HS, Carr AJ, Price AJ, Rees JL (2008) Transferring simulated arthroscopic skills to the operating theatre: a randomised blinded study. J Bone Joint Surg Br 90:494–499CrossRefPubMed
18.
go back to reference Hunter S, McLaren P (1993) Specialist medical training and the Calman report. Br Med J 306:1281–1282CrossRef Hunter S, McLaren P (1993) Specialist medical training and the Calman report. Br Med J 306:1281–1282CrossRef
19.
go back to reference Jacobsen ME, Andersen MJ, Hansen CO, Konge L (2015) Testing basic competency in knee arthroscopy using a virtual reality simulator: exploring validity and reliability. J Bone Joint Surg Am 97:775–781CrossRefPubMed Jacobsen ME, Andersen MJ, Hansen CO, Konge L (2015) Testing basic competency in knee arthroscopy using a virtual reality simulator: exploring validity and reliability. J Bone Joint Surg Am 97:775–781CrossRefPubMed
21.
go back to reference Koehler RJ, Amsdell S, Arendt EA, Bisson LJ, Bramen JP, Butler A, Cosgarea AJ, Harner CD, Garrett WE, Olson T, Warme WJ, Nicandri GT (2013) The arthroscopic surgical skill evaluation tool (ASSET). Am J Sports Med 41:1229–1237CrossRefPubMedPubMedCentral Koehler RJ, Amsdell S, Arendt EA, Bisson LJ, Bramen JP, Butler A, Cosgarea AJ, Harner CD, Garrett WE, Olson T, Warme WJ, Nicandri GT (2013) The arthroscopic surgical skill evaluation tool (ASSET). Am J Sports Med 41:1229–1237CrossRefPubMedPubMedCentral
22.
go back to reference Lopez G, Wright R, Martin D, Jung J, Bracey D, Gupta R (2015) A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection. J Bone Joint Surg Am 97:659–666CrossRefPubMed Lopez G, Wright R, Martin D, Jung J, Bracey D, Gupta R (2015) A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection. J Bone Joint Surg Am 97:659–666CrossRefPubMed
23.
go back to reference Marsh H (2015) Better not look down…. Ann R Coll Surg Eng (Suppl) 97:339–342CrossRef Marsh H (2015) Better not look down…. Ann R Coll Surg Eng (Suppl) 97:339–342CrossRef
24.
go back to reference Milburn JA, Khera G, Hornby ST, Malone PSC, Fitzgerald JEF (2012) Introduction, availability and role of simulation in surgical education and training: review of current evidence and recommendations from the Association of Surgeons in Training. Int J Surg 10:393–398CrossRefPubMed Milburn JA, Khera G, Hornby ST, Malone PSC, Fitzgerald JEF (2012) Introduction, availability and role of simulation in surgical education and training: review of current evidence and recommendations from the Association of Surgeons in Training. Int J Surg 10:393–398CrossRefPubMed
26.
go back to reference Nousiainen MT, McQueen SA, Ferguson P, Alman B, Kraemer W, Safir O, Reznick R, Sonnadara R (2015) Simulation for teaching orthopaedic residents in a competency-based curriculum: do the benefits justify the increased costs? Clin Orthop Relat Res. doi:10.1007/s11999-015-4512-6 Nousiainen MT, McQueen SA, Ferguson P, Alman B, Kraemer W, Safir O, Reznick R, Sonnadara R (2015) Simulation for teaching orthopaedic residents in a competency-based curriculum: do the benefits justify the increased costs? Clin Orthop Relat Res. doi:10.​1007/​s11999-015-4512-6
27.
go back to reference Palter VN, Grantcharov TP (2014) Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room. Ann Surg 259:443–448CrossRefPubMed Palter VN, Grantcharov TP (2014) Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room. Ann Surg 259:443–448CrossRefPubMed
28.
go back to reference Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156:312–316CrossRefPubMed Panait L, Akkary E, Bell RL, Roberts KE, Dudrick SJ, Duffy AJ (2009) The role of haptic feedback in laparoscopic simulation training. J Surg Res 156:312–316CrossRefPubMed
29.
go back to reference Pedowitz RA, Nicandri GT, Angelo RL, Ryu RKN, Gallagher AG (2015) Objective assessment of knot-tying proficiency with the fundamentals of arthroscopic surgery training program workstation and knot tester. Arthroscopy 31(10):1872–1879CrossRefPubMed Pedowitz RA, Nicandri GT, Angelo RL, Ryu RKN, Gallagher AG (2015) Objective assessment of knot-tying proficiency with the fundamentals of arthroscopic surgery training program workstation and knot tester. Arthroscopy 31(10):1872–1879CrossRefPubMed
30.
go back to reference Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern 13:257–266CrossRef Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern 13:257–266CrossRef
31.
go back to reference Shah J, Darzi A (2002) Virtual reality flexible cystoscopy: a validation study. Br J Urol 90:828–832CrossRef Shah J, Darzi A (2002) Virtual reality flexible cystoscopy: a validation study. Br J Urol 90:828–832CrossRef
32.
go back to reference Stunt JJ, Kerkhoffs GMMJ, Horeman T, van Dijk CN, Tuijthof GJM (2014) Validation of the PASSPORT V2 training environment for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3213-0 Stunt JJ, Kerkhoffs GMMJ, Horeman T, van Dijk CN, Tuijthof GJM (2014) Validation of the PASSPORT V2 training environment for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-014-3213-0
33.
go back to reference Stunt JJ, Kerkhoffs GMMJ, van Dijk CN, Tuijthof GJM (2015) Validation of the ArthroS virtual reality simulator for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc 23:3436–3442CrossRefPubMed Stunt JJ, Kerkhoffs GMMJ, van Dijk CN, Tuijthof GJM (2015) Validation of the ArthroS virtual reality simulator for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc 23:3436–3442CrossRefPubMed
34.
go back to reference Tashiro Y, Miura H, Nakanishi Y, Okazaki K, Iwamoto Y (2009) Evaluation of skills in arthroscopic training based on trajectory and force data. Clin Orthop Relat Res 467:546–552CrossRefPubMed Tashiro Y, Miura H, Nakanishi Y, Okazaki K, Iwamoto Y (2009) Evaluation of skills in arthroscopic training based on trajectory and force data. Clin Orthop Relat Res 467:546–552CrossRefPubMed
35.
go back to reference Tuijthof GJM, van Sterkenburg MN, Sierevelt IN, van Oldenrijk J, Van Dijk CN, Kerkhoffs GMMJ (2010) First validation of the PASSPORT training environment for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc 18:218–224CrossRefPubMed Tuijthof GJM, van Sterkenburg MN, Sierevelt IN, van Oldenrijk J, Van Dijk CN, Kerkhoffs GMMJ (2010) First validation of the PASSPORT training environment for arthroscopic skills. Knee Surg Sports Traumatol Arthrosc 18:218–224CrossRefPubMed
37.
go back to reference Weiner IB, Craighead WE (eds) (2010) The corsini encyclopedia of psychology. Wiley, Hoboken Weiner IB, Craighead WE (eds) (2010) The corsini encyclopedia of psychology. Wiley, Hoboken
38.
go back to reference Wentink M, Stassen LPS, Alwayn I, Hosman RJAW, Stassen HG (2003) Rasmussen’s model of human behavior in laparoscopy training. Surg Endosc 17:1241–1246CrossRefPubMed Wentink M, Stassen LPS, Alwayn I, Hosman RJAW, Stassen HG (2003) Rasmussen’s model of human behavior in laparoscopy training. Surg Endosc 17:1241–1246CrossRefPubMed
39.
go back to reference Ziegler R, Fischer G, Müller W, Göbel M (1995) Virtual reality arthroscopy training simulator. Comput Biol Med 25:193–203CrossRefPubMed Ziegler R, Fischer G, Müller W, Göbel M (1995) Virtual reality arthroscopy training simulator. Comput Biol Med 25:193–203CrossRefPubMed
Metadata
Title
Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics
Authors
Patrick Garfjeld Roberts
Paul Guyver
Mathew Baldwin
Kash Akhtar
Abtin Alvand
Andrew J. Price
Jonathan L. Rees
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 2/2017
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-016-4114-1

Other articles of this Issue 2/2017

Knee Surgery, Sports Traumatology, Arthroscopy 2/2017 Go to the issue