Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 5/2015

Open Access 01-05-2015 | Experimental Study

Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro

Authors: Soki Kato, Mitsuru Saito, Hiroki Funasaki, Keishi Marumo

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 5/2015

Login to get access

Abstract

Purpose

Differences in the tissue-specific collagen maturation process between tendon and ligament are still unknown. Collagen cross-link formation is crucial for the collagen maturation process. The aim of this study is to examine collagen maturation processes of anterior cruciate ligament (ACL), medial collateral ligament (MCL), and patellar tendon (PT) in vitro, in order to determine the optimal cell source for tissue engineering of ligament.

Methods

Cells derived from the ACL, MCL, and PT of New Zealand white rabbits were isolated. Each cell type was cultured for up to 4 weeks after reaching confluence. Cell–matrix layers were evaluated and compared for their morphology, collagen cross-links, and gene expression levels of lysine hydroxylase 1 and 2, lysyl oxidase (LOX), tenomodulin, collagen1A1 (Col1A1), and collagen3A1 (Col3A1).

Results

Transmission electron microscopy photomicrographs verified that collagen fibrils were secreted from all three types of fibroblasts. A higher ratio of dihydroxylysinonorleucine/hydroxylysinonorleucine was evident in the ligament compared to the tendon, which was consistent with lysine hydroxylase 2/lysine hydroxylase 1 gene expression. The gene expression of LOX, which regulates the total amount of enzymatic cross-linking, and the gene expression levels of Col1A1 and Col3A1 were higher in the ACL matrix than in the MCL and PT matrices.

Conclusion

ACL, MCL, and PT cells have distinct collagen maturation processes at the cellular level. In addition, the collagen maturation of ACL cells is not necessarily inferior to that of MCL and PT cells in that all three cell types have a good ability to synthesize collagen and induce collagen maturation. This bioactivity of ACL cells in terms of ligament-specific mature collagen induction can be applied to tissue-engineered ACL reconstruction or remnant preserving procedure with ACL reconstruction.
Literature
1.
go back to reference Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265CrossRefPubMed Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265CrossRefPubMed
2.
go back to reference Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172CrossRefPubMed Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172CrossRefPubMed
3.
go back to reference Amiel D, Kuiper SD, Wallace CD, Harwood FL, VandeBerg JS (1991) Age-related properties of medial collateral ligament and anterior cruciate ligament: a morphologic and collagen maturation study in the rabbit. J Gerontol 46(4):B159–B165CrossRefPubMed Amiel D, Kuiper SD, Wallace CD, Harwood FL, VandeBerg JS (1991) Age-related properties of medial collateral ligament and anterior cruciate ligament: a morphologic and collagen maturation study in the rabbit. J Gerontol 46(4):B159–B165CrossRefPubMed
4.
go back to reference Amiel D, Nagineni CN, Choi SH, Lee J (1995) Intrinsic properties of ACL and MCL cells and their responses to growth factors. Med Sci Sports Exerc 27(6):844–851CrossRefPubMed Amiel D, Nagineni CN, Choi SH, Lee J (1995) Intrinsic properties of ACL and MCL cells and their responses to growth factors. Med Sci Sports Exerc 27(6):844–851CrossRefPubMed
5.
go back to reference Bolton CW, Bruchman WC (1985) The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res 196:202–213PubMed Bolton CW, Bruchman WC (1985) The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res 196:202–213PubMed
6.
go back to reference Chen H, Tang Y, Li S, Shen Y, Liu X, Zhong C (2002) Biologic characteristics of fibroblast cells cultured from the knee ligaments. Chin J Traumatol 5(2):92–96PubMed Chen H, Tang Y, Li S, Shen Y, Liu X, Zhong C (2002) Biologic characteristics of fibroblast cells cultured from the knee ligaments. Chin J Traumatol 5(2):92–96PubMed
7.
go back to reference Chun J, Tuan TL, Han B, Vangsness CT, Nimni ME (2003) Cultures of ligament fibroblasts in fibrin matrix gel. Connect Tissue Res 44(2):81–87CrossRefPubMed Chun J, Tuan TL, Han B, Vangsness CT, Nimni ME (2003) Cultures of ligament fibroblasts in fibrin matrix gel. Connect Tissue Res 44(2):81–87CrossRefPubMed
8.
go back to reference Cooper JA Jr, Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, Laurencin CT (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747–2754CrossRefPubMed Cooper JA Jr, Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, Laurencin CT (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747–2754CrossRefPubMed
9.
go back to reference Date H, Furumatsu T, Sakoma Y, Yoshida A, Hayashi Y, Abe N, Ozaki T (2010) GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts. J Orthop Res 28(2):225–231PubMed Date H, Furumatsu T, Sakoma Y, Yoshida A, Hayashi Y, Abe N, Ozaki T (2010) GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts. J Orthop Res 28(2):225–231PubMed
10.
go back to reference Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006) Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 77(4):785–794CrossRefPubMed Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006) Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 77(4):785–794CrossRefPubMed
11.
go back to reference Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27(26):4573–4580CrossRefPubMed Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006) Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 27(26):4573–4580CrossRefPubMed
12.
go back to reference Fan H, Liu H, Wong EJ, Toh SL, Goh JC (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29(23):3324–3337CrossRefPubMed Fan H, Liu H, Wong EJ, Toh SL, Goh JC (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29(23):3324–3337CrossRefPubMed
13.
go back to reference Frank C, McDonald D, Wilson J, Eyre D, Shrive N (1995) Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. J Orthop Res 13(2):157–165CrossRefPubMed Frank C, McDonald D, Wilson J, Eyre D, Shrive N (1995) Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. J Orthop Res 13(2):157–165CrossRefPubMed
14.
go back to reference Fujii K, Yamagishi T, Nagafuchi T, Tsuji M, Kuboki Y (1994) Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc 2(4):229–233CrossRefPubMed Fujii K, Yamagishi T, Nagafuchi T, Tsuji M, Kuboki Y (1994) Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc 2(4):229–233CrossRefPubMed
15.
go back to reference Ge Z, Goh JC, Lee EH (2005) Selection of cell sources for ligament tissue engineering. Cell Transpl 14(8):573–583CrossRef Ge Z, Goh JC, Lee EH (2005) Selection of cell sources for ligament tissue engineering. Cell Transpl 14(8):573–583CrossRef
16.
go back to reference Geiger MH, Green MH, Monosov A, Akeson WH, Amiel D (1994) An in vitro assay of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cell migration. Connect Tissue Res 30(3):215–224CrossRefPubMed Geiger MH, Green MH, Monosov A, Akeson WH, Amiel D (1994) An in vitro assay of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) cell migration. Connect Tissue Res 30(3):215–224CrossRefPubMed
17.
go back to reference Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21(23):2461–2474CrossRefPubMed Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21(23):2461–2474CrossRefPubMed
18.
go back to reference Haddad-Weber M, Prager P, Kunz M, Seefried L, Jakob F, Murray MM, Evans CH, Noth U, Steinert AF (2010) BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 12(4):505–513CrossRefPubMedCentralPubMed Haddad-Weber M, Prager P, Kunz M, Seefried L, Jakob F, Murray MM, Evans CH, Noth U, Steinert AF (2010) BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 12(4):505–513CrossRefPubMedCentralPubMed
19.
go back to reference Hadjicostas PT, Soucacos PN, Koleganova N, Krohmer G, Berger I (2008) Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study. Knee Surg Sports Traumatol Arthrosc 16(12):1099–1107CrossRefPubMed Hadjicostas PT, Soucacos PN, Koleganova N, Krohmer G, Berger I (2008) Comparative and morphological analysis of commonly used autografts for anterior cruciate ligament reconstruction with the native ACL: an electron, microscopic and morphologic study. Knee Surg Sports Traumatol Arthrosc 16(12):1099–1107CrossRefPubMed
20.
go back to reference Hankenson KD, Turek JJ (1999) Porcine anterior cruciate ligament fibroblasts are similar to cells derived from the ligamentum teres, another non-healing intra-articular ligament. Connect Tissue Res 40(1):13–21CrossRefPubMed Hankenson KD, Turek JJ (1999) Porcine anterior cruciate ligament fibroblasts are similar to cells derived from the ligamentum teres, another non-healing intra-articular ligament. Connect Tissue Res 40(1):13–21CrossRefPubMed
21.
go back to reference Harner CD, Giffin JR, Dunteman RC, Annunziata CC, Friedman MJ (2001) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect 50:463–474PubMed Harner CD, Giffin JR, Dunteman RC, Annunziata CC, Friedman MJ (2001) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect 50:463–474PubMed
22.
go back to reference Hiraki Y, Shukunami C (2005) Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: chondromodulin-I and tenomodulin. Connect Tissue Res 46(1):3–11CrossRefPubMed Hiraki Y, Shukunami C (2005) Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: chondromodulin-I and tenomodulin. Connect Tissue Res 46(1):3–11CrossRefPubMed
23.
go back to reference Kobayashi K, Healey RM, Sah RL, Clark JJ, Tu BP, Goomer RS, Akeson WH, Moriya H, Amiel D (2000) Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng 6(1):29–38CrossRefPubMed Kobayashi K, Healey RM, Sah RL, Clark JJ, Tu BP, Goomer RS, Akeson WH, Moriya H, Amiel D (2000) Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng 6(1):29–38CrossRefPubMed
24.
go back to reference Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102(2):344–352CrossRefPubMed Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102(2):344–352CrossRefPubMed
25.
go back to reference Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46CrossRefPubMed Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46CrossRefPubMed
26.
go back to reference Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816CrossRefPubMed Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816CrossRefPubMed
27.
go back to reference Marumo K, Saito M, Yamagishi T, Fujii K (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med 33(8):1166–1173CrossRefPubMed Marumo K, Saito M, Yamagishi T, Fujii K (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med 33(8):1166–1173CrossRefPubMed
28.
go back to reference McPherson GK, Mendenhall HV, Gibbons DF, Plenk H, Rottmann W, Sanford JB, Kennedy JC, Roth JH (1985) Experimental mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Orthop Relat Res 196:186–195PubMed McPherson GK, Mendenhall HV, Gibbons DF, Plenk H, Rottmann W, Sanford JB, Kennedy JC, Roth JH (1985) Experimental mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Orthop Relat Res 196:186–195PubMed
29.
go back to reference Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH (1992) Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res 10(4):465–475CrossRefPubMed Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH (1992) Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res 10(4):465–475CrossRefPubMed
30.
go back to reference Oshima Y, Sato K, Tashiro F, Miyazaki J, Nishida K, Hiraki Y, Tano Y, Shukunami C (2004) Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J Cell Sci 117(Pt 13):2731–2744CrossRefPubMed Oshima Y, Sato K, Tashiro F, Miyazaki J, Nishida K, Hiraki Y, Tano Y, Shukunami C (2004) Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I. J Cell Sci 117(Pt 13):2731–2744CrossRefPubMed
31.
go back to reference Richmond JC, Manseau CJ, Patz R, McConville O (1992) Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med 20(1):24–28CrossRefPubMed Richmond JC, Manseau CJ, Patz R, McConville O (1992) Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med 20(1):24–28CrossRefPubMed
32.
go back to reference Ross SM, Joshi R, Frank CB (1990) Establishment and comparison of fibroblast cell lines from the medial collateral and anterior cruciate ligaments of the rabbit. In Vitro Cell Dev Biol 26(6):579–584CrossRefPubMed Ross SM, Joshi R, Frank CB (1990) Establishment and comparison of fibroblast cell lines from the medial collateral and anterior cruciate ligaments of the rabbit. In Vitro Cell Dev Biol 26(6):579–584CrossRefPubMed
33.
go back to reference Rumian AP, Wallace AL, Birch HL (2007) Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J Orthop Res 25(4):458–464CrossRefPubMed Rumian AP, Wallace AL, Birch HL (2007) Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J Orthop Res 25(4):458–464CrossRefPubMed
34.
go back to reference Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Intern 21(2):195–214CrossRef Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Intern 21(2):195–214CrossRef
35.
go back to reference Saito M, Marumo K, Fujii K, Ishioka N (1997) Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem 253(1):26–32CrossRefPubMed Saito M, Marumo K, Fujii K, Ishioka N (1997) Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem 253(1):26–32CrossRefPubMed
36.
go back to reference Saito M, Soshi S, Fujii K (2003) Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res 18(9):1695–1705CrossRefPubMed Saito M, Soshi S, Fujii K (2003) Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res 18(9):1695–1705CrossRefPubMed
37.
go back to reference Saito M, Soshi S, Tanaka T, Fujii K (2004) Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Bone 35(3):644–655CrossRefPubMed Saito M, Soshi S, Tanaka T, Fujii K (2004) Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Bone 35(3):644–655CrossRefPubMed
38.
go back to reference Song G, Zhang H, Zhang J, Li X, Chen X, Li Y, Feng H (2013) The anterior cruciate ligament remnant: to leave it or not? Arthroscopy 29(7):1253–1262CrossRefPubMed Song G, Zhang H, Zhang J, Li X, Chen X, Li Y, Feng H (2013) The anterior cruciate ligament remnant: to leave it or not? Arthroscopy 29(7):1253–1262CrossRefPubMed
39.
go back to reference Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ (2004) Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10:893–903CrossRefPubMed Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ (2004) Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10:893–903CrossRefPubMed
40.
go back to reference Willems ME, Miller GR, Stauber WT (2001) Force deficits after stretches of activated rat muscle-tendon complex with reduced collagen cross-linking. Eur J Appl Physiol 85(5):405–411CrossRefPubMed Willems ME, Miller GR, Stauber WT (2001) Force deficits after stretches of activated rat muscle-tendon complex with reduced collagen cross-linking. Eur J Appl Physiol 85(5):405–411CrossRefPubMed
41.
go back to reference Yoshida M, Fujii K (1999) Differences in cellular properties and responses to growth factors between human ACL and MCL cells. J Orthop Sci 4(4):293–298CrossRefPubMed Yoshida M, Fujii K (1999) Differences in cellular properties and responses to growth factors between human ACL and MCL cells. J Orthop Sci 4(4):293–298CrossRefPubMed
Metadata
Title
Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro
Authors
Soki Kato
Mitsuru Saito
Hiroki Funasaki
Keishi Marumo
Publication date
01-05-2015
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 5/2015
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2773-8

Other articles of this Issue 5/2015

Knee Surgery, Sports Traumatology, Arthroscopy 5/2015 Go to the issue