Skip to main content
Top
Published in: Intensive Care Medicine 4/2008

Open Access 01-04-2008 | Brief Report

Assessment of stroke volumeindex with three different bioimpedance algorithms: lack of agreement compared to thermodilution

Authors: Eric E. C. de Waal, Maurits K. Konings, Cor J. Kalkman, Wolfgang F. Buhre

Published in: Intensive Care Medicine | Issue 4/2008

Login to get access

Abstract

Objective

The accuracy of bioimpedance stroke volumeindex (SVI) is questionable as studies report inconsistent results. It remains unclear whether the algorithms alone are responsible for these findings. We analyzed the raw impedance data with three algorithms and compared bioimpedance SVI to transpulmonary thermodilution (SVITD).

Design and setting

Prospective observational clinical study in a university hospital.

Patients

Twenty adult patients scheduled for coronary artery bypass grafting (CABG).

Interventions

SVITD and bioimpedance parameters were simultaneously obtained before surgery (t 1), after bypass (t 2), after sternal closure (t 3), at the intensive care unit (t 4), at normothermia (t 5), after extubation (t 6) and before discharge (t 7). Bioimpedance data were analyzed off-line using cylinder (Kubicek: SVIK; Wang: SVIW) and truncated cone based algorithms (Sramek–Bernstein: SVISB).

Measurements and results

Bias and precision between the SVITD and SVIK, SVISB, and SVIW was 1.0 ± 10.8, 9.8 ± 11.4, and −15.7 ± 8.2 ml/m2 respectively, while the mean error was abundantly above 30%. Analysis of data per time moment resulted in a mean error above 30%, except for SVIW at t 2 (28%).

Conclusions

Estimation of SVI by cylinder or truncated cone based algorithms is not reliable for clinical decision making in patients undergoing CABG surgery. A more robust approach for estimating bioimpedance based SVI may exclude inconsistencies in the underlying algorithms in existing thoracic bioimpedance cardiography devices.
Appendix
Available only for authorised users
Literature
1.
go back to reference Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRef Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRef
2.
go back to reference Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, PAC-Man study collaboration (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomized controlled trial. Lancet 366:472–477PubMedCrossRef Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, PAC-Man study collaboration (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomized controlled trial. Lancet 366:472–477PubMedCrossRef
3.
go back to reference Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL, French Pulmonary Artery Catheter Study Group (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720PubMedCrossRef Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL, French Pulmonary Artery Catheter Study Group (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720PubMedCrossRef
4.
go back to reference Peters SG, Afessa B, Decker PA, Schroeder DR, Offord KP, Scott JP (2003) Increased risk associated with pulmonary artery catheterization in the medical intensive care unit. J Crit Care 18:166–171PubMedCrossRef Peters SG, Afessa B, Decker PA, Schroeder DR, Offord KP, Scott JP (2003) Increased risk associated with pulmonary artery catheterization in the medical intensive care unit. J Crit Care 18:166–171PubMedCrossRef
5.
go back to reference Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24:183–193PubMedCrossRef Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24:183–193PubMedCrossRef
6.
go back to reference Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM (1999) A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med 27:1203–1213PubMedCrossRef Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM (1999) A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med 27:1203–1213PubMedCrossRef
7.
go back to reference Thangathurai D, Charbonnet C, Roessler P, Wo CC, Mikhail M, Yoahida R, Shoemaker WC (1997) Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 11:440–444PubMedCrossRef Thangathurai D, Charbonnet C, Roessler P, Wo CC, Mikhail M, Yoahida R, Shoemaker WC (1997) Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 11:440–444PubMedCrossRef
8.
go back to reference Spiess BD, Patel MA, Soltow LO, Wright IH (2001) Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth 15:567–573PubMedCrossRef Spiess BD, Patel MA, Soltow LO, Wright IH (2001) Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth 15:567–573PubMedCrossRef
9.
go back to reference Sageman WS, Riffenburgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16:8–14PubMedCrossRef Sageman WS, Riffenburgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 16:8–14PubMedCrossRef
10.
go back to reference Young JD, McQuillan P (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70:58–62PubMedCrossRef Young JD, McQuillan P (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70:58–62PubMedCrossRef
11.
go back to reference Doering L, Lum E, Dracup K, Friedman A (1995) Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 23:1667–1673PubMedCrossRef Doering L, Lum E, Dracup K, Friedman A (1995) Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 23:1667–1673PubMedCrossRef
12.
go back to reference Buhre W, Weyland A, Kazmaier S, Hanekop GG, Baryalei MM, Sydow M, Sonntag H (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13:437–440PubMedCrossRef Buhre W, Weyland A, Kazmaier S, Hanekop GG, Baryalei MM, Sydow M, Sonntag H (1999) Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13:437–440PubMedCrossRef
13.
go back to reference Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerospace Med 37:1208–1212PubMed Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerospace Med 37:1208–1212PubMed
14.
go back to reference Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909PubMedCrossRef Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909PubMedCrossRef
15.
go back to reference Wang Y, Haynor DR, Kim Y (2001) A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography. IEEE Trans Biomed Eng 48:1390–1401PubMedCrossRef Wang Y, Haynor DR, Kim Y (2001) A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography. IEEE Trans Biomed Eng 48:1390–1401PubMedCrossRef
16.
go back to reference Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91PubMedCrossRef Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91PubMedCrossRef
17.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I:307–310 Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I:307–310
18.
go back to reference Kauppinen PK, Hyttinen JA, Malmivuo JA (1998) Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann Biomed Eng 26:694–702PubMedCrossRef Kauppinen PK, Hyttinen JA, Malmivuo JA (1998) Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann Biomed Eng 26:694–702PubMedCrossRef
19.
go back to reference Raaijmakers E, Faes TJ, Goovaerts HG, Meijer JH, de Vries PM, Heethaar RM (1998) Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography. Med Biol Eng Comput 36:592–597PubMedCrossRef Raaijmakers E, Faes TJ, Goovaerts HG, Meijer JH, de Vries PM, Heethaar RM (1998) Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography. Med Biol Eng Comput 36:592–597PubMedCrossRef
20.
go back to reference Konings MK, Bouma CJ, Mali WP, Viergever MA (1997) 2D Intravascular EIT using a non-iterative, non-linear reconstruction algorithm. Lecture Notes Comput Sci 1230:57–70 Konings MK, Bouma CJ, Mali WP, Viergever MA (1997) 2D Intravascular EIT using a non-iterative, non-linear reconstruction algorithm. Lecture Notes Comput Sci 1230:57–70
Metadata
Title
Assessment of stroke volumeindex with three different bioimpedance algorithms: lack of agreement compared to thermodilution
Authors
Eric E. C. de Waal
Maurits K. Konings
Cor J. Kalkman
Wolfgang F. Buhre
Publication date
01-04-2008
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 4/2008
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-007-0938-y

Other articles of this Issue 4/2008

Intensive Care Medicine 4/2008 Go to the issue

Clinical Commentary

Passive leg raising

Announcements

Announcement