Skip to main content
Top
Published in: Intensive Care Medicine 8/2007

01-08-2007 | Editorial

Understanding high-frequency oscillation: lessons from the animal kingdom

Authors: Niall D. Ferguson, Jesús Villar, Arthur S. Slutsky

Published in: Intensive Care Medicine | Issue 8/2007

Login to get access

Excerpt

Our understanding of the mechanisms and importance of ventilator-induced lung injury (VILI) has advanced over the past three decades, in large part because of carefully conducted animal experiments [14]. The principles derived and knowledge gained from these studies has subsequently been applied and tested in the clinical arena, leading to reductions in mortality in adults with the acute respiratory distress syndrome (ARDS) [5, 6]. While significant progress has been made, mortality of ventilated patients with disease processes, such as ARDS, remains very high, and despite the advances, it is likely that this high mortality is still due partly to VILI. Many experimental and clinical questions related to VILI remain unanswered; one such area is the impact of high-frequency oscillation (HFO) on VILI in ARDS. …
Literature
1.
go back to reference Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Resp Dis 110:556–565PubMed Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Resp Dis 110:556–565PubMed
2.
go back to reference Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Resp Crit Care Med 157:294–323PubMed Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Resp Crit Care Med 157:294–323PubMed
3.
go back to reference Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33PubMedCrossRef Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33PubMedCrossRef
4.
go back to reference Dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68:585–618PubMedCrossRef Dos Santos CC, Slutsky AS (2006) The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol 68:585–618PubMedCrossRef
5.
go back to reference Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRef
6.
go back to reference The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRef
7.
go back to reference Henderson Y, Chillingsworth F, Whitney J (1915) The respiratory dead space. Am J Physiol 38:1–19 Henderson Y, Chillingsworth F, Whitney J (1915) The respiratory dead space. Am J Physiol 38:1–19
8.
go back to reference Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O (1991) Mitochondrial respiration in hummingbird flight muscles. Proc Natl Acad Sci USA 88:4870–4873PubMedCrossRef Suarez RK, Lighton JR, Brown GS, Mathieu-Costello O (1991) Mitochondrial respiration in hummingbird flight muscles. Proc Natl Acad Sci USA 88:4870–4873PubMedCrossRef
9.
go back to reference Bohn DJ, Miyasaka K, Marchak BE, Thompson WK, Froese AB, Bryan AC (1980) Ventilation by high-frequency oscillation. J Appl Physiol Resp Environ Exer Physiol 48:710–716 Bohn DJ, Miyasaka K, Marchak BE, Thompson WK, Froese AB, Bryan AC (1980) Ventilation by high-frequency oscillation. J Appl Physiol Resp Environ Exer Physiol 48:710–716
10.
go back to reference Slutsky AS, Drazen FM, Ingram RH Jr, Kamm RD, Shapiro AH, Fredberg JJ, Loring SH, Lehr J (1980) Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209:609–671PubMedCrossRef Slutsky AS, Drazen FM, Ingram RH Jr, Kamm RD, Shapiro AH, Fredberg JJ, Loring SH, Lehr J (1980) Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209:609–671PubMedCrossRef
11.
go back to reference Froese AB, Bryan AC (1987) High frequency ventilation. Am Rev Resp Dis 135:1363–1374PubMed Froese AB, Bryan AC (1987) High frequency ventilation. Am Rev Resp Dis 135:1363–1374PubMed
12.
go back to reference Imai Y, Nakagawa S, Ito Y, Kawano T, Slutsky AS, Miyasaka K (2001) Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol 91:1836–1844PubMed Imai Y, Nakagawa S, Ito Y, Kawano T, Slutsky AS, Miyasaka K (2001) Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J Appl Physiol 91:1836–1844PubMed
13.
go back to reference Rotta AT, Gunnarsson B, Fuhrman BP, Hernan LJ, Steinhorn DM (2001) Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury. Crit Care Med 29:2176–2184PubMedCrossRef Rotta AT, Gunnarsson B, Fuhrman BP, Hernan LJ, Steinhorn DM (2001) Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury. Crit Care Med 29:2176–2184PubMedCrossRef
14.
go back to reference von der Hardt K, Kandler MA, Fink L, Schoof E, Dotsch J, Brandenstein O, Bohle RM, Rascher W (2004) High frequency oscillatory ventilation suppresses inflammatory response in lung tissue and microdissected alveolar macrophages in surfactant depleted piglets. Pediatr Res 55:339–346PubMedCrossRef von der Hardt K, Kandler MA, Fink L, Schoof E, Dotsch J, Brandenstein O, Bohle RM, Rascher W (2004) High frequency oscillatory ventilation suppresses inflammatory response in lung tissue and microdissected alveolar macrophages in surfactant depleted piglets. Pediatr Res 55:339–346PubMedCrossRef
15.
go back to reference Vazquez de Anda GF, Hartog A, Verbrugge SJ, Gommers D, Lachmann B (1999) The open lung concept: pressure-controlled ventilation is as effective as high-frequency oscillatory ventilation in improving gas exchange and lung mechanics in surfactant-deficient animals. Intensive Care Med 25:990–996PubMedCrossRef Vazquez de Anda GF, Hartog A, Verbrugge SJ, Gommers D, Lachmann B (1999) The open lung concept: pressure-controlled ventilation is as effective as high-frequency oscillatory ventilation in improving gas exchange and lung mechanics in surfactant-deficient animals. Intensive Care Med 25:990–996PubMedCrossRef
16.
go back to reference Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755PubMedCrossRef Rimensberger PC, Pache JC, McKerlie C, Frndova H, Cox PN (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755PubMedCrossRef
17.
go back to reference Muellenbach RM, Kredel M, Said HM, Klosterhalfen B, Zollhoefer B, Wunder C, Redel A, Schmidt M, Roewer N, Brederlau J (2007) High-frequency oscillatory ventilation reduces lung inflammation: a large-animal 24-hour model of respiratory distress. Intensive Care Med DOI 10.1007/s00134-007-0708-x Muellenbach RM, Kredel M, Said HM, Klosterhalfen B, Zollhoefer B, Wunder C, Redel A, Schmidt M, Roewer N, Brederlau J (2007) High-frequency oscillatory ventilation reduces lung inflammation: a large-animal 24-hour model of respiratory distress. Intensive Care Med DOI 10.​1007/​s00134-007-0708-x
18.
go back to reference Takeda J, Mackenzie CF, Watson R, Roberts HG Jr, Moorman R, Hoff BH, Wilson D, Johnston GS, Hill JL (1987) Collateral ventilation of obstructed lung during high-frequency oscillation in dogs and pigs. Crit Care Med 15:858–862PubMedCrossRef Takeda J, Mackenzie CF, Watson R, Roberts HG Jr, Moorman R, Hoff BH, Wilson D, Johnston GS, Hill JL (1987) Collateral ventilation of obstructed lung during high-frequency oscillation in dogs and pigs. Crit Care Med 15:858–862PubMedCrossRef
Metadata
Title
Understanding high-frequency oscillation: lessons from the animal kingdom
Authors
Niall D. Ferguson
Jesús Villar
Arthur S. Slutsky
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 8/2007
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-007-0706-z

Other articles of this Issue 8/2007

Intensive Care Medicine 8/2007 Go to the issue

Announcements

Announcements