Skip to main content
Top
Published in: Diabetologia 8/2020

01-08-2020 | Obesity | Article

Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice

Authors: Yasumasa Ikeda, Hiroaki Watanabe, Tetsuya Shiuchi, Hirofumi Hamano, Yuya Horinouchi, Masaki Imanishi, Mitsuhiro Goda, Yoshito Zamami, Kenshi Takechi, Yuki Izawa-Ishizawa, Licht Miyamoto, Keisuke Ishizawa, Ken-ichi Aihara, Koichiro Tsuchiya, Toshiaki Tamaki

Published in: Diabetologia | Issue 8/2020

Login to get access

Abstract

Aims/hypothesis

Iron accumulation affects obesity and diabetes, both of which are ameliorated by iron reduction. Ferritin, an iron-storage protein, plays a crucial role in iron metabolism. H-ferritin exerts its cytoprotective action by reducing toxicity via its ferroxidase activity. We investigated the role of macrophage H-ferritin in obesity and diabetes.

Methods

Conditional macrophage-specific H-ferritin (Fth, also known as Fth1) knockout (LysM-Cre Fth KO) mice were used and divided into four groups: wild-type (WT) and LysM-Cre Fth KO mice with normal diet (ND), and WT and LysM-Cre Fth KO mice with high-fat diet (HFD). These mice were analysed for characteristics of obesity and diabetes, tissue iron content, inflammation, oxidative stress, insulin sensitivity and metabolic measurements. RAW264.7 macrophage cells were used for in vitro experiments.

Results

Iron concentration reduced, and mRNA expression of ferroportin increased, in macrophages from LysM-Cre Fth KO mice. HFD-induced obesity was lower in LysM-Cre Fth KO mice than in WT mice at 12 weeks (body weight: KO 34.6 ± 5.6 g vs WT 40.1 ± 5.2 g). mRNA expression of inflammatory cytokines and infiltrated macrophages and oxidative stress increased in the adipose tissue of HFD-fed WT mice, but was not elevated in HFD-fed LysM-Cre Fth KO mice. However, WT mice fed an HFD had elevated iron concentration in adipose tissue and spleen, which was not observed in LysM-Cre Fth KO mice fed an HFD (adipose tissue [μmol Fe/g protein]: KO 1496 ± 479 vs WT 2316 ± 866; spleen [μmol Fe/g protein]: KO 218 ± 54 vs WT 334 ± 83). Moreover, HFD administration impaired both glucose tolerance and insulin sensitivity in WT mice, which was ameliorated in LysM-Cre Fth KO mice. In addition, energy expenditure, mRNA expression of thermogenic genes, and body temperature were higher in KO mice with HFD than WT mice with HFD. In vitro experiments showed that iron content was reduced, and lipopolysaccharide-induced Tnf-α (also known as Tnf) mRNA upregulation was inhibited in a macrophage cell line transfected with Fth siRNA.

Conclusions/interpretation

Deletion of macrophage H-ferritin suppresses the inflammatory response by reducing intracellular iron levels, resulting in the prevention of HFD-induced obesity and diabetes. The findings from this study highlight macrophage iron levels as a potential therapeutic target for obesity and diabetes.
Literature
16.
go back to reference Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173CrossRefPubMed Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173CrossRefPubMed
27.
go back to reference Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P (1996) Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J 314(Pt 1):139–144CrossRefPubMedPubMedCentral Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P (1996) Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J 314(Pt 1):139–144CrossRefPubMedPubMedCentral
31.
go back to reference Rogers JT (1996) Ferritin translation by interleukin-1and interleukin-6: the role of sequences upstream of the start codons of the heavy and light subunit genes. Blood 87(6):2525–2537CrossRefPubMed Rogers JT (1996) Ferritin translation by interleukin-1and interleukin-6: the role of sequences upstream of the start codons of the heavy and light subunit genes. Blood 87(6):2525–2537CrossRefPubMed
Metadata
Title
Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice
Authors
Yasumasa Ikeda
Hiroaki Watanabe
Tetsuya Shiuchi
Hirofumi Hamano
Yuya Horinouchi
Masaki Imanishi
Mitsuhiro Goda
Yoshito Zamami
Kenshi Takechi
Yuki Izawa-Ishizawa
Licht Miyamoto
Keisuke Ishizawa
Ken-ichi Aihara
Koichiro Tsuchiya
Toshiaki Tamaki
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2020
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-020-05153-0

Other articles of this Issue 8/2020

Diabetologia 8/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.