Skip to main content
Top
Published in: Diabetologia 2/2020

Open Access 01-02-2020 | Artificial Intelligence | Article

An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study

Authors: Bryan M. Williams, Davide Borroni, Rongjun Liu, Yitian Zhao, Jiong Zhang, Jonathan Lim, Baikai Ma, Vito Romano, Hong Qi, Maryam Ferdousi, Ioannis N. Petropoulos, Georgios Ponirakis, Stephen Kaye, Rayaz A. Malik, Uazman Alam, Yalin Zheng

Published in: Diabetologia | Issue 2/2020

Login to get access

Abstract

Aims/hypothesis

Corneal confocal microscopy is a rapid non-invasive ophthalmic imaging technique that identifies peripheral and central neurodegenerative disease. Quantification of corneal sub-basal nerve plexus morphology, however, requires either time-consuming manual annotation or a less-sensitive automated image analysis approach. We aimed to develop and validate an artificial intelligence-based, deep learning algorithm for the quantification of nerve fibre properties relevant to the diagnosis of diabetic neuropathy and to compare it with a validated automated analysis program, ACCMetrics.

Methods

Our deep learning algorithm, which employs a convolutional neural network with data augmentation, was developed for the automated quantification of the corneal sub-basal nerve plexus for the diagnosis of diabetic neuropathy. The algorithm was trained using a high-end graphics processor unit on 1698 corneal confocal microscopy images; for external validation, it was further tested on 2137 images. The algorithm was developed to identify total nerve fibre length, branch points, tail points, number and length of nerve segments, and fractal numbers. Sensitivity analyses were undertaken to determine the AUC for ACCMetrics and our algorithm for the diagnosis of diabetic neuropathy.

Results

The intraclass correlation coefficients for our algorithm were superior to those for ACCMetrics for total corneal nerve fibre length (0.933 vs 0.825), mean length per segment (0.656 vs 0.325), number of branch points (0.891 vs 0.570), number of tail points (0.623 vs 0.257), number of nerve segments (0.878 vs 0.504) and fractals (0.927 vs 0.758). In addition, our proposed algorithm achieved an AUC of 0.83, specificity of 0.87 and sensitivity of 0.68 for the classification of participants without (n = 90) and with (n = 132) neuropathy (defined by the Toronto criteria).

Conclusions/interpretation

These results demonstrated that our deep learning algorithm provides rapid and excellent localisation performance for the quantification of corneal nerve biomarkers. This model has potential for adoption into clinical screening programmes for diabetic neuropathy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tan H, Yang M, Wu Z et al (2004) Rapid screening method for Schistosoma japonicum infection using questionnaires in flood area of the People’s Republic of China. Acta Trop 90(1):1–9PubMed Tan H, Yang M, Wu Z et al (2004) Rapid screening method for Schistosoma japonicum infection using questionnaires in flood area of the People’s Republic of China. Acta Trop 90(1):1–9PubMed
2.
go back to reference Lauria G, Cornblath D, Johansson O et al (2005) EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol 12(10):747–758PubMed Lauria G, Cornblath D, Johansson O et al (2005) EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol 12(10):747–758PubMed
3.
go back to reference Smith AG, Russell J, Feldman EL et al (2006) Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29(6):1294–1299PubMed Smith AG, Russell J, Feldman EL et al (2006) Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29(6):1294–1299PubMed
4.
go back to reference Quattrini C, Tavakoli M, Jeziorska M et al (2007) Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56(8):2148–2154PubMed Quattrini C, Tavakoli M, Jeziorska M et al (2007) Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56(8):2148–2154PubMed
5.
go back to reference Dehghani C, Pritchard N, Edwards K et al (2014) Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophth Vis Sci 55(5):3195–3199 Dehghani C, Pritchard N, Edwards K et al (2014) Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophth Vis Sci 55(5):3195–3199
6.
go back to reference Sivaskandarajah GA, Halpern EM, Lovblom LE et al (2013) Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 36(9):2748–2755PubMedPubMedCentral Sivaskandarajah GA, Halpern EM, Lovblom LE et al (2013) Structure-function relationship between corneal nerves and conventional small-fiber tests in type 1 diabetes. Diabetes Care 36(9):2748–2755PubMedPubMedCentral
7.
go back to reference Tavakoli M, Quattrini C, Abbott C et al (2010) Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 33(8):1792–1797PubMedPubMedCentral Tavakoli M, Quattrini C, Abbott C et al (2010) Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 33(8):1792–1797PubMedPubMedCentral
8.
go back to reference Kemp HI, Petropoulos IN, Rice AS et al (2017) Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol 135(7):795–800PubMedPubMedCentral Kemp HI, Petropoulos IN, Rice AS et al (2017) Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol 135(7):795–800PubMedPubMedCentral
9.
go back to reference Ferdousi M, Azmi S, Petropoulos IN et al (2015) Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PloS One 10(10):e0139394PubMedPubMedCentral Ferdousi M, Azmi S, Petropoulos IN et al (2015) Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PloS One 10(10):e0139394PubMedPubMedCentral
10.
go back to reference Tavakoli M, Marshall A, Thompson L et al (2009) Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 40(6):976–984PubMed Tavakoli M, Marshall A, Thompson L et al (2009) Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 40(6):976–984PubMed
11.
go back to reference Tavakoli M, Marshall A, Pitceathly R et al (2010) Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 223(1):245–250PubMed Tavakoli M, Marshall A, Pitceathly R et al (2010) Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 223(1):245–250PubMed
12.
go back to reference Petropoulos IN, Alam U, Fadavi H et al (2013) Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care 36(11):3646–3651PubMedPubMedCentral Petropoulos IN, Alam U, Fadavi H et al (2013) Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care 36(11):3646–3651PubMedPubMedCentral
13.
go back to reference Petropoulos IN, Manzoor T, Morgan P et al (2013) Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea 32(5):e83–e89PubMed Petropoulos IN, Manzoor T, Morgan P et al (2013) Repeatability of in vivo corneal confocal microscopy to quantify corneal nerve morphology. Cornea 32(5):e83–e89PubMed
14.
go back to reference Petropoulos IN, Alam U, Fadavi H et al (2014) Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophth Vis Sci 55(4):2071–2078 Petropoulos IN, Alam U, Fadavi H et al (2014) Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophth Vis Sci 55(4):2071–2078
15.
go back to reference Alam U, Jeziorska M, Petropoulos IN et al (2017) Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PloS One 12(7):e0180175PubMedPubMedCentral Alam U, Jeziorska M, Petropoulos IN et al (2017) Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PloS One 12(7):e0180175PubMedPubMedCentral
16.
go back to reference Chen X, Graham J, Dabbah MA et al (2015) Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 38(6):1138–1144PubMedPubMedCentral Chen X, Graham J, Dabbah MA et al (2015) Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 38(6):1138–1144PubMedPubMedCentral
17.
go back to reference Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N (2015) Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 38(4):671–675PubMed Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N (2015) Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 38(4):671–675PubMed
18.
go back to reference Tavakoli M, Mitu-Pretorian M, Petropoulos IN et al (2013) Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62(1):254–260PubMed Tavakoli M, Mitu-Pretorian M, Petropoulos IN et al (2013) Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 62(1):254–260PubMed
19.
go back to reference Ziegler D, Papanas N, Zhivov A et al (2014) Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63(7):2454–2463PubMed Ziegler D, Papanas N, Zhivov A et al (2014) Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63(7):2454–2463PubMed
20.
go back to reference Brines M, Culver DA, Ferdousi M et al (2018) Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci Rep-UK 8(1):4734 Brines M, Culver DA, Ferdousi M et al (2018) Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy. Sci Rep-UK 8(1):4734
21.
go back to reference Dabbah MA, Graham J, Petropoulos IN, Tavakoli M, Malik RA (2011) Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal 15(5):738–747PubMed Dabbah MA, Graham J, Petropoulos IN, Tavakoli M, Malik RA (2011) Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal 15(5):738–747PubMed
22.
go back to reference Dabbah MA, Graham J, Petropoulos I, Tavakoli M, Malik RA (2010) Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lecture Notes in Computer Science, vol. 6361. Springer, Berlin, Heidelberg, pp 300–307 Dabbah MA, Graham J, Petropoulos I, Tavakoli M, Malik RA (2010) Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. In: Jiang T, Navab N, Pluim JPW, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lecture Notes in Computer Science, vol. 6361. Springer, Berlin, Heidelberg, pp 300–307
23.
go back to reference Kim J, Markoulli M (2018) Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin Exp Optom 101(2):147–161PubMed Kim J, Markoulli M (2018) Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin Exp Optom 101(2):147–161PubMed
24.
go back to reference Chen X, Graham J, Dabbah MA, Petropoulos IN, Tavakoli M, Malik RA (2017) An automatic tool for quantification of nerve fibers in corneal confocal microscopy images. IEEE Trans Biomed Eng 64(4):786–794PubMed Chen X, Graham J, Dabbah MA, Petropoulos IN, Tavakoli M, Malik RA (2017) An automatic tool for quantification of nerve fibers in corneal confocal microscopy images. IEEE Trans Biomed Eng 64(4):786–794PubMed
25.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436PubMed LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436PubMed
26.
go back to reference Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243PubMedPubMedCentral Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243PubMedPubMedCentral
28.
go back to reference Scarpa F, Zheng X, Ohashi Y, Ruggeri A (2011) Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Invest Ophth Vis Sci 52(9):6404–6408 Scarpa F, Zheng X, Ohashi Y, Ruggeri A (2011) Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Invest Ophth Vis Sci 52(9):6404–6408
29.
go back to reference Scarpa F, Grisan E, Ruggeri A (2008) Automatic recognition of corneal nerve structures in images from confocal microscopy. Invest Ophth Vis Sci 49(11):4801–4807 Scarpa F, Grisan E, Ruggeri A (2008) Automatic recognition of corneal nerve structures in images from confocal microscopy. Invest Ophth Vis Sci 49(11):4801–4807
30.
go back to reference Tesfaye S, Boulton AJ, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10):2285–2293PubMedPubMedCentral Tesfaye S, Boulton AJ, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10):2285–2293PubMedPubMedCentral
31.
go back to reference Marfurt CF, Cox J, Deek S, Dvorscak L (2010) Anatomy of the human corneal innervation. Exp Eye Res 90(4):478–492PubMed Marfurt CF, Cox J, Deek S, Dvorscak L (2010) Anatomy of the human corneal innervation. Exp Eye Res 90(4):478–492PubMed
32.
go back to reference Borroni D, Beech M, Williams B et al (2018) Building a validated in vivo confocal microscopy (IVCM) dataset for the study of corneal nerves. Invest Ophth Vis Sci 59(9):5719 Borroni D, Beech M, Williams B et al (2018) Building a validated in vivo confocal microscopy (IVCM) dataset for the study of corneal nerves. Invest Ophth Vis Sci 59(9):5719
33.
go back to reference Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1):3–30 Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS) 8(1):3–30
34.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI) Lecture Notes in Computer Science, vol. 9351. Springer, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical Image Computing and Computer-Assisted Intervention (MICCAI) Lecture Notes in Computer Science, vol. 9351. Springer, Cham, pp 234–241
35.
go back to reference Brunner M, Romano V, Steger B et al (2018) Imaging of corneal neovascularization: optical coherence tomography angiography and fluorescence angiography. Invest Ophth Vis Sci 59(3):1263–1269 Brunner M, Romano V, Steger B et al (2018) Imaging of corneal neovascularization: optical coherence tomography angiography and fluorescence angiography. Invest Ophth Vis Sci 59(3):1263–1269
37.
go back to reference Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35PubMed Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35PubMed
38.
go back to reference Chen X, Graham J, Petropoulos IN et al (2018) Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy. Invest Ophth Vis Sci 59(2):1113–1118 Chen X, Graham J, Petropoulos IN et al (2018) Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy. Invest Ophth Vis Sci 59(2):1113–1118
39.
go back to reference Bianciardi G, Latronico M, Traversi C (2015) Decreased geometric complexity of corneal nerve fibers distribution in Sjogren’s syndrome patients. Int J Ophthalmic Pathol Res 4:2 Bianciardi G, Latronico M, Traversi C (2015) Decreased geometric complexity of corneal nerve fibers distribution in Sjogren’s syndrome patients. Int J Ophthalmic Pathol Res 4:2
40.
go back to reference Perkins BA, Lovblom LE, Bril V et al (2018) Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 61(8):1856–1861PubMedPubMedCentral Perkins BA, Lovblom LE, Bril V et al (2018) Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 61(8):1856–1861PubMedPubMedCentral
41.
go back to reference Azmi S, Jeziorska M, Ferdousi M et al (2019) Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 62(8):1478–1487PubMedPubMedCentral Azmi S, Jeziorska M, Ferdousi M et al (2019) Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 62(8):1478–1487PubMedPubMedCentral
42.
go back to reference Baraz S, Zarea K, Shahbazian HB, Latifi SM (2014) Comparison of the accuracy of monofilament testing at various points of feet in peripheral diabetic neuropathy screening. J Diabetes Metab Disord 13(1):19 Baraz S, Zarea K, Shahbazian HB, Latifi SM (2014) Comparison of the accuracy of monofilament testing at various points of feet in peripheral diabetic neuropathy screening. J Diabetes Metab Disord 13(1):19
43.
go back to reference Qi H, Borroni D, Liu R et al (2018) Automated detection of corneal nerves using deep learning. Invest Ophth Vis Sci 59(9):5721 Qi H, Borroni D, Liu R et al (2018) Automated detection of corneal nerves using deep learning. Invest Ophth Vis Sci 59(9):5721
44.
go back to reference Oakley JD, Russakoff DB, Weinberg R et al (2018) Automated analysis of in vivo confocal microscopy corneal images using deep learning. Investigative Ophthalmology & Visual Science 59(9):1799 Oakley JD, Russakoff DB, Weinberg R et al (2018) Automated analysis of in vivo confocal microscopy corneal images using deep learning. Investigative Ophthalmology & Visual Science 59(9):1799
45.
go back to reference Zhang J, Bekkers E, Chen D et al (2018) Reconnection of interrupted curvilinear structures via cortically inspired completion for ophthalmologic images. IEEE Trans Biomed Eng 65(5):1151–1165PubMedPubMedCentral Zhang J, Bekkers E, Chen D et al (2018) Reconnection of interrupted curvilinear structures via cortically inspired completion for ophthalmologic images. IEEE Trans Biomed Eng 65(5):1151–1165PubMedPubMedCentral
46.
go back to reference Cho N, Shaw J, Karuranga S et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281PubMed Cho N, Shaw J, Karuranga S et al (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281PubMed
47.
go back to reference Iqbal Z, Azmi S, Yadav R et al (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40(6):828–849PubMed Iqbal Z, Azmi S, Yadav R et al (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40(6):828–849PubMed
48.
go back to reference Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17(7):903–912PubMed Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17(7):903–912PubMed
49.
50.
go back to reference Culver DA, Dahan A, Bajorunas D et al (2017) Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophth Vis Sci 58(6): BIO52-BIO60 Culver DA, Dahan A, Bajorunas D et al (2017) Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophth Vis Sci 58(6): BIO52-BIO60
Metadata
Title
An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study
Authors
Bryan M. Williams
Davide Borroni
Rongjun Liu
Yitian Zhao
Jiong Zhang
Jonathan Lim
Baikai Ma
Vito Romano
Hong Qi
Maryam Ferdousi
Ioannis N. Petropoulos
Georgios Ponirakis
Stephen Kaye
Rayaz A. Malik
Uazman Alam
Yalin Zheng
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 2/2020
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-019-05023-4

Other articles of this Issue 2/2020

Diabetologia 2/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.