Skip to main content
Top
Published in: Diabetologia 9/2018

Open Access 01-09-2018 | Article

Magnesium deficiency prevents high-fat-diet-induced obesity in mice

Authors: Steef Kurstjens, Janna A. van Diepen, Caro Overmars-Bos, Wynand Alkema, René J. M. Bindels, Frances M. Ashcroft, Cees J. J. Tack, Joost G. J. Hoenderop, Jeroen H. F. de Baaij

Published in: Diabetologia | Issue 9/2018

Login to get access

Abstract

Aims/hypothesis

Hypomagnesaemia (blood Mg2+ <0.7 mmol/l) is a common phenomenon in individuals with type 2 diabetes. However, it remains unknown how a low blood Mg2+ concentration affects lipid and energy metabolism. Therefore, the importance of Mg2+ in obesity and type 2 diabetes has been largely neglected to date. This study aims to determine the effects of hypomagnesaemia on energy homeostasis and lipid metabolism.

Methods

Mice (n = 12/group) were fed either a low-fat diet (LFD) or a high-fat diet (HFD) (10% or 60% of total energy) in combination with a normal- or low-Mg2+ content (0.21% or 0.03% wt/wt) for 17 weeks. Metabolic cages were used to investigate food intake, energy expenditure and respiration. Blood and tissues were taken to study metabolic parameters and mRNA expression profiles, respectively.

Results

We show that low dietary Mg2+ intake ameliorates HFD-induced obesity in mice (47.00 ± 1.53 g vs 38.62 ± 1.51 g in mice given a normal Mg2+-HFD and low Mg2+-HFD, respectively, p < 0.05). Consequently, fasting serum glucose levels decreased and insulin sensitivity improved in low Mg2+-HFD-fed mice. Moreover, HFD-induced liver steatosis was absent in the low Mg2+ group. In hypomagnesaemic HFD-fed mice, mRNA expression of key lipolysis genes was increased in epididymal white adipose tissue (eWAT), corresponding to reduced lipid storage and high blood lipid levels. Low Mg2+-HFD-fed mice had increased brown adipose tissue (BAT) Ucp1 mRNA expression and a higher body temperature. No difference was observed in energy expenditure between the two HFD groups.

Conclusions/interpretation

Mg2+-deficiency abrogates HFD-induced obesity in mice through enhanced eWAT lipolysis and BAT activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kurstjens S, de Baaij JH, Bouras H, Bindels RJ, Tack CJ, Hoenderop JG (2017) Determinants of hypomagnesaemia in patients with type 2 diabetes mellitus. Eur J Endocrinol 176:11–19CrossRefPubMed Kurstjens S, de Baaij JH, Bouras H, Bindels RJ, Tack CJ, Hoenderop JG (2017) Determinants of hypomagnesaemia in patients with type 2 diabetes mellitus. Eur J Endocrinol 176:11–19CrossRefPubMed
2.
go back to reference Pham PC, Pham PM, Pham SV, Miller JM, Pham PT (2007) Hypomagnesaemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2:366–373CrossRefPubMed Pham PC, Pham PM, Pham SV, Miller JM, Pham PT (2007) Hypomagnesaemia in patients with type 2 diabetes. Clin J Am Soc Nephrol 2:366–373CrossRefPubMed
3.
go back to reference Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34:2116–2122CrossRefPubMedPubMedCentral Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34:2116–2122CrossRefPubMedPubMedCentral
4.
go back to reference Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JH (2016) Hypomagnesaemia in type 2 diabetes: a vicious circle? Diabetes 65:3–13CrossRefPubMed Gommers LM, Hoenderop JG, Bindels RJ, de Baaij JH (2016) Hypomagnesaemia in type 2 diabetes: a vicious circle? Diabetes 65:3–13CrossRefPubMed
5.
go back to reference Kieboom BC, Ligthart S, Dehghan A et al (2017) Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia 60:843–853CrossRefPubMed Kieboom BC, Ligthart S, Dehghan A et al (2017) Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia 60:843–853CrossRefPubMed
6.
go back to reference Hassan SAU, Ahmed I, Nasrullah A et al (2017) Comparison of serum magnesium levels in overweight and obese children and normal weight children. Cureus 9:e1607PubMedPubMedCentral Hassan SAU, Ahmed I, Nasrullah A et al (2017) Comparison of serum magnesium levels in overweight and obese children and normal weight children. Cureus 9:e1607PubMedPubMedCentral
7.
go back to reference Kirii K, Iso H, Date C, Fukui M, Tamakoshi A, JACC Study Group (2010) Magnesium intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr 29:99–106CrossRefPubMed Kirii K, Iso H, Date C, Fukui M, Tamakoshi A, JACC Study Group (2010) Magnesium intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr 29:99–106CrossRefPubMed
8.
go back to reference Guerrero-Romero F, Flores-Garcia A, Saldana-Guerrero S, Simental-Mendia LE, Rodriguez-Moran M (2016) Obesity and hypomagnesaemia. Eur J Intern Med 34:29–33CrossRefPubMed Guerrero-Romero F, Flores-Garcia A, Saldana-Guerrero S, Simental-Mendia LE, Rodriguez-Moran M (2016) Obesity and hypomagnesaemia. Eur J Intern Med 34:29–33CrossRefPubMed
9.
go back to reference de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46CrossRefPubMed de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46CrossRefPubMed
10.
go back to reference Harrison WH, Boyer PD, Falcone AB (1955) The mechanism of enzymic phosphate transfer reactions. J Biol Chem 215:303–317PubMed Harrison WH, Boyer PD, Falcone AB (1955) The mechanism of enzymic phosphate transfer reactions. J Biol Chem 215:303–317PubMed
11.
go back to reference Wilson JE, Chin A (1991) Chelation of divalent cations by ATP, studied by titration calorimetry. Anal Biochem 193:16–19CrossRefPubMed Wilson JE, Chin A (1991) Chelation of divalent cations by ATP, studied by titration calorimetry. Anal Biochem 193:16–19CrossRefPubMed
12.
go back to reference Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4:60–72PubMed Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4:60–72PubMed
13.
go back to reference Shigematsu M, Nakagawa R, Tomonaga S, Funaba M, Matsui T (2016) Fluctuations in metabolite content in the liver of magnesium-deficient rats. Br J Nutr 1–6 Shigematsu M, Nakagawa R, Tomonaga S, Funaba M, Matsui T (2016) Fluctuations in metabolite content in the liver of magnesium-deficient rats. Br J Nutr 1–6
14.
go back to reference Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R (1993) Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21:1024–1029CrossRefPubMed Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R (1993) Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21:1024–1029CrossRefPubMed
15.
go back to reference Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A (1995) Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 38:1262–1270CrossRefPubMed Suarez A, Pulido N, Casla A, Casanova B, Arrieta FJ, Rovira A (1995) Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 38:1262–1270CrossRefPubMed
16.
go back to reference Vicario PP, Bennun A (1990) Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. Arch Biochem Biophys 278:99–105CrossRefPubMed Vicario PP, Bennun A (1990) Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. Arch Biochem Biophys 278:99–105CrossRefPubMed
17.
go back to reference Chubanov V, Ferioli S, Wisnowsky A et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. eLife 5:e20914CrossRefPubMedPubMedCentral Chubanov V, Ferioli S, Wisnowsky A et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. eLife 5:e20914CrossRefPubMedPubMedCentral
18.
go back to reference Rodriguez-Moran M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26:1147–1152CrossRefPubMed Rodriguez-Moran M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26:1147–1152CrossRefPubMed
19.
go back to reference Hadjistavri LS, Sarafidis PA, Georgianos PI et al (2010) Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit 16:CR307–CR312PubMed Hadjistavri LS, Sarafidis PA, Georgianos PI et al (2010) Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit 16:CR307–CR312PubMed
20.
go back to reference Lal J, Vasudev K, Kela AK, Jain SK (2003) Effect of oral magnesium supplementation on the lipid profile and blood glucose of patients with type 2 diabetes mellitus. J Assoc Physicians India 51:37–42PubMed Lal J, Vasudev K, Kela AK, Jain SK (2003) Effect of oral magnesium supplementation on the lipid profile and blood glucose of patients with type 2 diabetes mellitus. J Assoc Physicians India 51:37–42PubMed
21.
go back to reference Song Y, He K, Levitan EB, Manson JE, Liu S (2006) Effects of oral magnesium supplementation on glycaemic control in type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med 23:1050–1056CrossRefPubMed Song Y, He K, Levitan EB, Manson JE, Liu S (2006) Effects of oral magnesium supplementation on glycaemic control in type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med 23:1050–1056CrossRefPubMed
22.
go back to reference Gueux E, Rayssiguier Y, Piot MC, Alcindor L (1984) Reduction of plasma lecithin—cholesterol acyltransferase activity by acute magnesium deficiency in the rat. J Nutr 114:1479–1483CrossRefPubMed Gueux E, Rayssiguier Y, Piot MC, Alcindor L (1984) Reduction of plasma lecithin—cholesterol acyltransferase activity by acute magnesium deficiency in the rat. J Nutr 114:1479–1483CrossRefPubMed
23.
go back to reference Rayssiguier Y, Noe L, Etienne J, Gueux E, Cardot P, Mazur A (1991) Effect of magnesium deficiency on post-heparin lipase activity and tissue lipoprotein lipase in the rat. Lipids 26:182–186CrossRefPubMed Rayssiguier Y, Noe L, Etienne J, Gueux E, Cardot P, Mazur A (1991) Effect of magnesium deficiency on post-heparin lipase activity and tissue lipoprotein lipase in the rat. Lipids 26:182–186CrossRefPubMed
25.
go back to reference Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentral Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefPubMedPubMedCentral
26.
27.
go back to reference Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRef Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRef
28.
29.
go back to reference Collins S (2011) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 2:102CrossRef Collins S (2011) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 2:102CrossRef
30.
go back to reference de Souza CJ, Burkey BF (2001) Beta 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr Pharm Des 7:1433–1449CrossRefPubMed de Souza CJ, Burkey BF (2001) Beta 3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr Pharm Des 7:1433–1449CrossRefPubMed
31.
go back to reference Lowell BB, Flier JS (1997) Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med 48:307–316CrossRefPubMed Lowell BB, Flier JS (1997) Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med 48:307–316CrossRefPubMed
32.
go back to reference Meyers DS, Skwish S, Dickinson KE, Kienzle B, Arbeeny CM (1997) Beta 3-adrenergic receptor-mediated lipolysis and oxygen consumption in brown adipocytes from cynomolgus monkeys. J Clin Endocrinol Metab 82:395–401PubMed Meyers DS, Skwish S, Dickinson KE, Kienzle B, Arbeeny CM (1997) Beta 3-adrenergic receptor-mediated lipolysis and oxygen consumption in brown adipocytes from cynomolgus monkeys. J Clin Endocrinol Metab 82:395–401PubMed
34.
go back to reference Bertinato J, Lavergne C, Rahimi S et al (2016) Moderately low magnesium intake impairs growth of lean body mass in obese-prone and obese-resistant rats fed a high-energy diet. Nutrients 8 Bertinato J, Lavergne C, Rahimi S et al (2016) Moderately low magnesium intake impairs growth of lean body mass in obese-prone and obese-resistant rats fed a high-energy diet. Nutrients 8
35.
go back to reference Chaudhary DP, Boparai RK, Bansal DD (2007) Effect of a low magnesium diet on in vitro glucose uptake in sucrose fed rats. Magnes Res 20:187–195PubMed Chaudhary DP, Boparai RK, Bansal DD (2007) Effect of a low magnesium diet on in vitro glucose uptake in sucrose fed rats. Magnes Res 20:187–195PubMed
36.
go back to reference Kimura Y, Murase M, Nagata Y (1996) Change in glucose homeostasis in rats by long-term magnesium-deficient diet. J Nutr Sci Vitaminol 42:407–422CrossRefPubMed Kimura Y, Murase M, Nagata Y (1996) Change in glucose homeostasis in rats by long-term magnesium-deficient diet. J Nutr Sci Vitaminol 42:407–422CrossRefPubMed
37.
go back to reference Murasato Y, Harada Y, Ikeda M, Nakashima Y, Hayashida Y (1999) Effect of magnesium deficiency on autonomic circulatory regulation in conscious rats. Hypertension 34:247–252CrossRefPubMed Murasato Y, Harada Y, Ikeda M, Nakashima Y, Hayashida Y (1999) Effect of magnesium deficiency on autonomic circulatory regulation in conscious rats. Hypertension 34:247–252CrossRefPubMed
39.
go back to reference Hendrani AD, Adesiyun T, Quispe R et al (2016) Dyslipidemia management in primary prevention of cardiovascular disease: current guidelines and strategies. World J Cardiol 8:201–210CrossRefPubMedPubMedCentral Hendrani AD, Adesiyun T, Quispe R et al (2016) Dyslipidemia management in primary prevention of cardiovascular disease: current guidelines and strategies. World J Cardiol 8:201–210CrossRefPubMedPubMedCentral
40.
go back to reference Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A (2006) High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res 19:237–243PubMed Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A (2006) High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res 19:237–243PubMed
41.
go back to reference Olatunji LA, Soladoye AO (2007) Increased magnesium intake prevents hyperlipidemia and insulin resistance and reduces lipid peroxidation in fructose-fed rats. Pathophysiology 14:11–15CrossRefPubMed Olatunji LA, Soladoye AO (2007) Increased magnesium intake prevents hyperlipidemia and insulin resistance and reduces lipid peroxidation in fructose-fed rats. Pathophysiology 14:11–15CrossRefPubMed
42.
go back to reference Guo J, Hall KD (2011) Challenges of indirect calorimetry in mice. Am J Physiol Regul Integr Comp Physiol 300:R780 Guo J, Hall KD (2011) Challenges of indirect calorimetry in mice. Am J Physiol Regul Integr Comp Physiol 300:R780
44.
go back to reference Jimenez M, Barbatelli G, Allevi R et al (2003) Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur J Biochem 270:699–705CrossRefPubMed Jimenez M, Barbatelli G, Allevi R et al (2003) Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur J Biochem 270:699–705CrossRefPubMed
45.
go back to reference Susulic VS, Frederich RC, Lawitts J et al (1995) Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 270:29483–29492CrossRefPubMed Susulic VS, Frederich RC, Lawitts J et al (1995) Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem 270:29483–29492CrossRefPubMed
46.
go back to reference Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG (2014) Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res 55:2276–2286CrossRefPubMedPubMedCentral Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG (2014) Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res 55:2276–2286CrossRefPubMedPubMedCentral
47.
go back to reference Xiao C, Goldgof M, Gavrilova O, Reitman ML (2015) Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity 23:1450–1459CrossRefPubMed Xiao C, Goldgof M, Gavrilova O, Reitman ML (2015) Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity 23:1450–1459CrossRefPubMed
48.
go back to reference Flink EB, Shane SR, Scobbo RR, Blehschmidt NG, McDowell P (1979) Relationship of free fatty acids and magnesium in ethanol withdrawal in dogs. Metab Clin Exp 28:858–865CrossRefPubMed Flink EB, Shane SR, Scobbo RR, Blehschmidt NG, McDowell P (1979) Relationship of free fatty acids and magnesium in ethanol withdrawal in dogs. Metab Clin Exp 28:858–865CrossRefPubMed
49.
go back to reference Bodenhamer J, Bergstrom R, Brown D, Gabow P, Marx JA, Lowenstein SR (1992) Frequently nebulized beta-agonists for asthma: effects on serum electrolytes. Ann Emerg Med 21:1337–1342CrossRefPubMed Bodenhamer J, Bergstrom R, Brown D, Gabow P, Marx JA, Lowenstein SR (1992) Frequently nebulized beta-agonists for asthma: effects on serum electrolytes. Ann Emerg Med 21:1337–1342CrossRefPubMed
50.
go back to reference Aguirre J, Pinto JE, Trifaro JM (1977) Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol 269:371–394CrossRefPubMedPubMedCentral Aguirre J, Pinto JE, Trifaro JM (1977) Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol 269:371–394CrossRefPubMedPubMedCentral
51.
go back to reference Soltani N, Keshavarz M, Dehpour AR (2007) Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozocin diabetic rat. Eur J Pharmacol 560:201–205CrossRefPubMed Soltani N, Keshavarz M, Dehpour AR (2007) Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozocin diabetic rat. Eur J Pharmacol 560:201–205CrossRefPubMed
Metadata
Title
Magnesium deficiency prevents high-fat-diet-induced obesity in mice
Authors
Steef Kurstjens
Janna A. van Diepen
Caro Overmars-Bos
Wynand Alkema
René J. M. Bindels
Frances M. Ashcroft
Cees J. J. Tack
Joost G. J. Hoenderop
Jeroen H. F. de Baaij
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4680-5

Other articles of this Issue 9/2018

Diabetologia 9/2018 Go to the issue