Skip to main content
Top
Published in: Diabetologia 9/2018

01-09-2018 | Review

Novel approaches to restore beta cell function in prediabetes and type 2 diabetes

Published in: Diabetologia | Issue 9/2018

Login to get access

Abstract

The World Health Organization estimates that diabetes prevalence has risen from 108 million in 1980 to 422 million in 2014, with type 2 diabetes accounting for more than 90% of these cases. Furthermore, the prevalence of prediabetes (impaired fasting glucose and/or impaired glucose tolerance) is more than 40% in some countries and is associated with a global rise in obesity. Therefore it is imperative that we develop new approaches to reduce the development of prediabetes and progression to type 2 diabetes. In this review, we explore the gains made over the past decade by focused efforts to improve insulin secretion by the beta cell or insulin sensitivity of target tissues. We also describe multitasking candidates, which could improve both beta cell dysfunction and peripheral insulin sensitivity. Moreover, we highlight provocative findings indicating that additional glucose regulatory tissues, such as the brain, may be key therapeutic targets. Taken together, the promise of these new multi-faceted approaches reinforces the importance of understanding and tackling type 2 diabetes pathogenesis from a multi-tissue perspective.
Appendix
Available only for authorised users
Literature
2.
go back to reference American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41(Suppl 1):S13–S27CrossRef American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41(Suppl 1):S13–S27CrossRef
3.
go back to reference Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794CrossRefPubMedPubMedCentral Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794CrossRefPubMedPubMedCentral
4.
go back to reference Kitabchi AE, Temprosa M, Knowler WC et al (2005) Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 54:2404–2414CrossRefPubMed Kitabchi AE, Temprosa M, Knowler WC et al (2005) Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin. Diabetes 54:2404–2414CrossRefPubMed
5.
go back to reference Nauck M, Frid A, Hermansen K et al (2009) Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 32:84–90CrossRefPubMedPubMedCentral Nauck M, Frid A, Hermansen K et al (2009) Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 32:84–90CrossRefPubMedPubMedCentral
6.
go back to reference Cefalu WT, Leiter LA, Yoon KH et al (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950CrossRefPubMed Cefalu WT, Leiter LA, Yoon KH et al (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950CrossRefPubMed
7.
go back to reference Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M (2017) Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 19:1061–1070CrossRefPubMed Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M (2017) Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab 19:1061–1070CrossRefPubMed
8.
go back to reference Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed
9.
go back to reference Kahn SE, Lachin JM, Zinman B et al (2011) Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT. Diabetes 60:1552–1560CrossRefPubMedPubMedCentral Kahn SE, Lachin JM, Zinman B et al (2011) Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT. Diabetes 60:1552–1560CrossRefPubMedPubMedCentral
10.
go back to reference McIntosh CH, Demuth HU, Pospisilik JA, Pederson R (2005) Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept 128:159–165CrossRefPubMed McIntosh CH, Demuth HU, Pospisilik JA, Pederson R (2005) Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept 128:159–165CrossRefPubMed
11.
go back to reference Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed
12.
go back to reference Seck T, Nauck M, Sheng D et al (2010) Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: a 2-year study. Int J Clin Pract 64:562–576CrossRefPubMed Seck T, Nauck M, Sheng D et al (2010) Safety and efficacy of treatment with sitagliptin or glipizide in patients with type 2 diabetes inadequately controlled on metformin: a 2-year study. Int J Clin Pract 64:562–576CrossRefPubMed
13.
go back to reference DeFronzo RA, Tripathy D, Schwenke DC et al (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115CrossRefPubMed DeFronzo RA, Tripathy D, Schwenke DC et al (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115CrossRefPubMed
14.
go back to reference Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508CrossRefPubMedPubMedCentral Ferrannini E, Muscelli E, Frascerra S et al (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499–508CrossRefPubMedPubMedCentral
15.
go back to reference Mulla CM, Middelbeek RJW, Patti ME (2018) Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 1411:53–64CrossRefPubMed Mulla CM, Middelbeek RJW, Patti ME (2018) Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 1411:53–64CrossRefPubMed
16.
go back to reference Oh E, Stull ND, Mirmira RG, Thurmond DC (2014) Syntaxin 4 up-regulation increases efficiency of insulin release in pancreatic islets from humans with and without type 2 diabetes mellitus. J Clin Endocrinol Metab 99:E866–E870CrossRefPubMedPubMedCentral Oh E, Stull ND, Mirmira RG, Thurmond DC (2014) Syntaxin 4 up-regulation increases efficiency of insulin release in pancreatic islets from humans with and without type 2 diabetes mellitus. J Clin Endocrinol Metab 99:E866–E870CrossRefPubMedPubMedCentral
17.
go back to reference Oh E, Miller RA, Thurmond DC (2015) Syntaxin 4 overexpression ameliorates effects of aging and high-fat diet on glucose control and extends lifespan. Cell Metab 22:499–507CrossRefPubMedPubMedCentral Oh E, Miller RA, Thurmond DC (2015) Syntaxin 4 overexpression ameliorates effects of aging and high-fat diet on glucose control and extends lifespan. Cell Metab 22:499–507CrossRefPubMedPubMedCentral
18.
go back to reference Ahn M, Yoder SM, Wang Z et al (2016) The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets. Diabetologia 59:2145–2155CrossRefPubMedPubMedCentral Ahn M, Yoder SM, Wang Z et al (2016) The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets. Diabetologia 59:2145–2155CrossRefPubMedPubMedCentral
19.
go back to reference Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC (2014) Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol 92:380–388CrossRefPubMedPubMedCentral Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC (2014) Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol 92:380–388CrossRefPubMedPubMedCentral
20.
go back to reference Chattopadhyay T, Singh RR, Gupta S, Surolia A (2017) Bone morphogenetic protein-7 (BMP-7) augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway. Biofactors 43:195–209CrossRefPubMed Chattopadhyay T, Singh RR, Gupta S, Surolia A (2017) Bone morphogenetic protein-7 (BMP-7) augments insulin sensitivity in mice with type II diabetes mellitus by potentiating PI3K/AKT pathway. Biofactors 43:195–209CrossRefPubMed
21.
22.
go back to reference Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266–5270CrossRefPubMedPubMedCentral Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266–5270CrossRefPubMedPubMedCentral
23.
go back to reference Zhou B, Li H, Xu L, Zang W, Wu S, Sun H (2013) Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway. Endocrinology 154:1055–1068CrossRefPubMed Zhou B, Li H, Xu L, Zang W, Wu S, Sun H (2013) Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway. Endocrinology 154:1055–1068CrossRefPubMed
25.
26.
go back to reference Scarlett JM, Rojas JM, Matsen ME et al (2016) Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med 22:800–806CrossRefPubMedPubMedCentral Scarlett JM, Rojas JM, Matsen ME et al (2016) Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med 22:800–806CrossRefPubMedPubMedCentral
28.
go back to reference Shepherd M, Pearson ER, Houghton J, Salt G, Ellard S, Hattersley AT (2003) No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care 26:3191–3192CrossRefPubMed Shepherd M, Pearson ER, Houghton J, Salt G, Ellard S, Hattersley AT (2003) No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabetes Care 26:3191–3192CrossRefPubMed
29.
go back to reference Pearson ER, Flechtner I, Njolstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477CrossRefPubMed Pearson ER, Flechtner I, Njolstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477CrossRefPubMed
30.
go back to reference Ahlqvist E, Storm P, Karajamaki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6:361–369CrossRefPubMed Ahlqvist E, Storm P, Karajamaki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6:361–369CrossRefPubMed
31.
go back to reference Barroso I, Luan J, Middelberg RP et al (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20CrossRefPubMedPubMedCentral Barroso I, Luan J, Middelberg RP et al (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20CrossRefPubMedPubMedCentral
33.
go back to reference Majithia AR, Flannick J, Shahinian P et al (2014) Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A 111:13127–13132CrossRefPubMedPubMedCentral Majithia AR, Flannick J, Shahinian P et al (2014) Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A 111:13127–13132CrossRefPubMedPubMedCentral
35.
go back to reference Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160CrossRefPubMedPubMedCentral Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160CrossRefPubMedPubMedCentral
36.
go back to reference Nitert MD, Dayeh T, Volkov P et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61:3322–3332CrossRefPubMedPubMedCentral Nitert MD, Dayeh T, Volkov P et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61:3322–3332CrossRefPubMedPubMedCentral
37.
go back to reference Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976CrossRefPubMed Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976CrossRefPubMed
38.
go back to reference Chen Z, Miao F, Paterson AD et al (2016) Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A 113:E3002–E3011CrossRefPubMedPubMedCentral Chen Z, Miao F, Paterson AD et al (2016) Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A 113:E3002–E3011CrossRefPubMedPubMedCentral
39.
go back to reference Elliott HR, Shihab HA, Lockett GA et al (2017) Role of DNA methylation in type 2 diabetes etiology: using genotype as a causal anchor. Diabetes 66:1713–1722CrossRefPubMedPubMedCentral Elliott HR, Shihab HA, Lockett GA et al (2017) Role of DNA methylation in type 2 diabetes etiology: using genotype as a causal anchor. Diabetes 66:1713–1722CrossRefPubMedPubMedCentral
40.
go back to reference Ofori JK, Salunkhe VA, Bagge A et al (2017) Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 7:44986CrossRefPubMedPubMedCentral Ofori JK, Salunkhe VA, Bagge A et al (2017) Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 7:44986CrossRefPubMedPubMedCentral
41.
go back to reference Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMed Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMed
42.
go back to reference Zhou T, Meng X, Che H et al (2016) Regulation of insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway. Cell Physiol Biochem 38:2063–2078CrossRefPubMed Zhou T, Meng X, Che H et al (2016) Regulation of insulin resistance by multiple MiRNAs via targeting the GLUT4 signalling pathway. Cell Physiol Biochem 38:2063–2078CrossRefPubMed
43.
go back to reference Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653CrossRefPubMed Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653CrossRefPubMed
44.
go back to reference Arnes L, Akerman I, Balderes DA, Ferrer J, Sussel L (2016) βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function. Genes Dev 30:502–507CrossRefPubMedPubMedCentral Arnes L, Akerman I, Balderes DA, Ferrer J, Sussel L (2016) βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function. Genes Dev 30:502–507CrossRefPubMedPubMedCentral
45.
go back to reference Jalabert A, Vial G, Guay C et al (2016) Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 59:1049–1058CrossRefPubMed Jalabert A, Vial G, Guay C et al (2016) Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 59:1049–1058CrossRefPubMed
46.
go back to reference Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239CrossRefPubMed Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239CrossRefPubMed
47.
go back to reference Ying W, Riopel M, Bandyopadhyay G et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171:372–384.e12CrossRefPubMed Ying W, Riopel M, Bandyopadhyay G et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171:372–384.e12CrossRefPubMed
Metadata
Title
Novel approaches to restore beta cell function in prediabetes and type 2 diabetes
Publication date
01-09-2018
Published in
Diabetologia / Issue 9/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4658-3

Other articles of this Issue 9/2018

Diabetologia 9/2018 Go to the issue

Up Front

Up Front