Skip to main content
Top
Published in: Diabetologia 8/2018

01-08-2018 | Article

Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet

Authors: Jian Li, Yong-Ping Lu, Oleg Tsuprykov, Ahmed A. Hasan, Christoph Reichetzeder, Mei Tian, Xiao Li Zhang, Qin Zhang, Guo-Ying Sun, Jingli Guo, Mohamed M. S. Gaballa, Xiao-Ning Peng, Ge Lin, Berthold Hocher

Published in: Diabetologia | Issue 8/2018

Login to get access

Abstract

Aims/hypothesis

Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy.

Methods

Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy.

Results

Male, but not female offspring of HFSSD-fed founders were heavier than those of control-diet-fed counterparts (p < 0.05 and p = 0.066 in males and females, respectively). Both male and female offspring of HFSSD-fed founders were longer compared with control (p < 0.01 for both sexes). Folate treatment of the pregnant dams abolished the effect of the paternal diet on the offspring’s body length (p ˂ 0.05). Female offspring of HFSSD-fed founders developed impaired glucose tolerance, which was restored by folate treatment of the dams during pregnancy. The beta cell density per pancreatic islet was decreased in offspring of HFSSD-fed rats (−20% in male and −15% in female F1 offspring, p ˂ 0.001 vs controls). Folate treatment significantly increased the beta cell density (4.3% and 3.3% after folate supplementation given to dams and founders, respectively, p ˂ 0.05 vs the offspring of HFSSD-fed male rats). Changes in liver connective tissue of female offspring of HFSSD-fed founders were ameliorated by treatment of dams with folate (p ˂ 0.01). Hepatic Ppara gene expression was upregulated in female offspring only (1.51-fold, p ˂ 0.05) and was restored in the female offspring by folate treatment (p ˂ 0.05). We observed an increase in hepatic Lcn2 and Tmcc2 expression in female offspring born to male rats exposed to an unhealthy diet during spermatogenesis before mating (p ˂ 0.05 vs controls). Folate treatment of the corresponding dams during pregnancy abolished this effect (p ˂ 0.05). Analysis of DNA methylation levels of CpG islands in the Ppara, Lcn2 and Tmcc2 promoter regions revealed that the paternal unhealthy diet induced alterations in the methylation pattern. These patterns were also affected by folate treatment. Total liver DNA methylation was increased by 1.52-fold in female offspring born to male rats on an unhealthy diet prior to mating (p ˂ 0.05). This effect was abolished by folate treatment during pregnancy (p ˂ 0.05 vs the offspring of HFSSD-fed male rats).

Conclusions/interpretation

Folate treatment of pregnant dams restores effects on female offspring’s glucose metabolism induced by pre-conception male founder HFSSD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reichetzeder C, Dwi Putra SE, Li J, Hocher B (2016) Developmental origins of disease - crisis precipitates change. Cell Physiol Biochem 39:919–938CrossRefPubMed Reichetzeder C, Dwi Putra SE, Li J, Hocher B (2016) Developmental origins of disease - crisis precipitates change. Cell Physiol Biochem 39:919–938CrossRefPubMed
2.
go back to reference Reichetzeder C, Dwi Putra SE, Pfab T et al (2016) Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics 8:82CrossRefPubMedPubMedCentral Reichetzeder C, Dwi Putra SE, Pfab T et al (2016) Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics 8:82CrossRefPubMedPubMedCentral
3.
go back to reference Novakovic B, Saffery R (2010) DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics 2:627–638CrossRefPubMed Novakovic B, Saffery R (2010) DNA methylation profiling highlights the unique nature of the human placental epigenome. Epigenomics 2:627–638CrossRefPubMed
4.
go back to reference Hocher B, Haumann H, Rahnenführer J et al (2016) Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner. Epigenetics 11:539–552CrossRefPubMedPubMedCentral Hocher B, Haumann H, Rahnenführer J et al (2016) Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner. Epigenetics 11:539–552CrossRefPubMedPubMedCentral
5.
go back to reference Thompson RF, Fazzari MJ, Niu H et al (2010) Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem 285:15111–15118CrossRefPubMedPubMedCentral Thompson RF, Fazzari MJ, Niu H et al (2010) Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem 285:15111–15118CrossRefPubMedPubMedCentral
6.
go back to reference Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348CrossRefPubMed Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348CrossRefPubMed
7.
go back to reference Barker DJ, Gluckman PD, Godfrey KM et al (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941CrossRefPubMed Barker DJ, Gluckman PD, Godfrey KM et al (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941CrossRefPubMed
8.
go back to reference Reichetzeder C, Chen H, Föller M et al (2014) Maternal vitamin D deficiency and fetal programming--lessons learned from humans and mice. Kidney Blood Press Res 39:315–329CrossRefPubMed Reichetzeder C, Chen H, Föller M et al (2014) Maternal vitamin D deficiency and fetal programming--lessons learned from humans and mice. Kidney Blood Press Res 39:315–329CrossRefPubMed
9.
go back to reference Thone-Reineke C, Kalk P, Dorn M et al (2006) High-protein nutrition during pregnancy and lactation programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner. Am J Phys Regul Integr Comp Phys 291:R1025–R1030 Thone-Reineke C, Kalk P, Dorn M et al (2006) High-protein nutrition during pregnancy and lactation programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner. Am J Phys Regul Integr Comp Phys 291:R1025–R1030
10.
go back to reference Kajantie E, Dunkel L, Turpeinen U et al (2003) Placental 11β-hydroxysteroid dehydrogenase-2 and fetal cortisol/cortisone shuttle in small preterm infants. J Clin Endocrinol Metab 88:493–500CrossRefPubMed Kajantie E, Dunkel L, Turpeinen U et al (2003) Placental 11β-hydroxysteroid dehydrogenase-2 and fetal cortisol/cortisone shuttle in small preterm infants. J Clin Endocrinol Metab 88:493–500CrossRefPubMed
11.
go back to reference Li J, Lu YP, Reichetzeder C et al (2016) Maternal PCaaC38:6 is associated with preterm birth - a risk factor for early and late adverse outcome of the offspring. Kidney Blood Press Res 41:250–257CrossRefPubMed Li J, Lu YP, Reichetzeder C et al (2016) Maternal PCaaC38:6 is associated with preterm birth - a risk factor for early and late adverse outcome of the offspring. Kidney Blood Press Res 41:250–257CrossRefPubMed
12.
go back to reference Hocher B, Slowinski T, Stolze T et al (2000) Association of maternal G protein beta3 subunit 825T allele with low birthweight. Lancet 355:1241–1242CrossRefPubMed Hocher B, Slowinski T, Stolze T et al (2000) Association of maternal G protein beta3 subunit 825T allele with low birthweight. Lancet 355:1241–1242CrossRefPubMed
13.
go back to reference McPherson NO, Fullston T, Aitken RJ, Lane M (2014) Paternal obesity, interventions, and mechanistic pathways to impaired health in offspring. Ann Nutr Metab 64:231–238CrossRefPubMed McPherson NO, Fullston T, Aitken RJ, Lane M (2014) Paternal obesity, interventions, and mechanistic pathways to impaired health in offspring. Ann Nutr Metab 64:231–238CrossRefPubMed
14.
15.
go back to reference Chen Y-P, Xiao X-M, Li J et al (2012) Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS One 7:e36329CrossRefPubMedPubMedCentral Chen Y-P, Xiao X-M, Li J et al (2012) Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS One 7:e36329CrossRefPubMedPubMedCentral
16.
go back to reference Ng S-F, Lin RCY, Laybutt DR et al (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–966CrossRefPubMed Ng S-F, Lin RCY, Laybutt DR et al (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–966CrossRefPubMed
17.
go back to reference McPherson NO, Lane M, Sandeman L et al (2017) An exercise-only intervention in obese fathers restores glucose and insulin regulation in conjunction with the rescue of pancreatic islet cell morphology and microRNA expression in male offspring. Nutrients 9:122CrossRefPubMedCentral McPherson NO, Lane M, Sandeman L et al (2017) An exercise-only intervention in obese fathers restores glucose and insulin regulation in conjunction with the rescue of pancreatic islet cell morphology and microRNA expression in male offspring. Nutrients 9:122CrossRefPubMedCentral
18.
go back to reference McPherson NO, Owens JA, Fullston T, Lane M (2015) Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab 308:E805–E821CrossRefPubMed McPherson NO, Owens JA, Fullston T, Lane M (2015) Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab 308:E805–E821CrossRefPubMed
19.
go back to reference Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386CrossRefPubMed Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386CrossRefPubMed
20.
go back to reference Torrens C, Brawley L, Anthony FW et al (2006) Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertens Dallas Tex 1979 47:982–987 Torrens C, Brawley L, Anthony FW et al (2006) Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertens Dallas Tex 1979 47:982–987
21.
go back to reference Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400CrossRefPubMed Chen Q, Yan M, Cao Z et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400CrossRefPubMed
22.
go back to reference Waldron D (2016) Non-coding RNA: inheritance of diet-induced metabolic changes via tsRNAs. Nat Rev Genet 17:128PubMed Waldron D (2016) Non-coding RNA: inheritance of diet-induced metabolic changes via tsRNAs. Nat Rev Genet 17:128PubMed
23.
24.
go back to reference Shin JH, Shiota K (1999) Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring. J Nutr 129:2070–2073CrossRefPubMed Shin JH, Shiota K (1999) Folic acid supplementation of pregnant mice suppresses heat-induced neural tube defects in the offspring. J Nutr 129:2070–2073CrossRefPubMed
25.
go back to reference Zhao M, Chen Y-H, Chen X et al (2014) Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice. Toxicol Lett 224:201–208CrossRefPubMed Zhao M, Chen Y-H, Chen X et al (2014) Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice. Toxicol Lett 224:201–208CrossRefPubMed
26.
27.
go back to reference Paul DS, Guilhamon P, Karpathakis A et al (2014) Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing. Epigenetics 9:678–684CrossRefPubMedPubMedCentral Paul DS, Guilhamon P, Karpathakis A et al (2014) Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing. Epigenetics 9:678–684CrossRefPubMedPubMedCentral
28.
go back to reference Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42:e69CrossRefPubMedPubMedCentral Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42:e69CrossRefPubMedPubMedCentral
29.
go back to reference Terashima M, Barbour S, Ren J et al (2015) Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10:861–871CrossRefPubMedPubMedCentral Terashima M, Barbour S, Ren J et al (2015) Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10:861–871CrossRefPubMedPubMedCentral
30.
go back to reference Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2015) Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS One 10:e0124737CrossRefPubMedPubMedCentral Ornellas F, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2015) Programming of obesity and comorbidities in the progeny: lessons from a model of diet-induced obese parents. PLoS One 10:e0124737CrossRefPubMedPubMedCentral
31.
go back to reference Ng S-F, Lin RCY, Maloney CA et al (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28:1830–1841CrossRefPubMed Ng S-F, Lin RCY, Maloney CA et al (2014) Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J 28:1830–1841CrossRefPubMed
32.
go back to reference Carone BR, Fauquier L, Habib N et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096CrossRefPubMedPubMedCentral Carone BR, Fauquier L, Habib N et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096CrossRefPubMedPubMedCentral
33.
go back to reference Gabory A, Roseboom TJ, Moore T et al (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4:5CrossRefPubMedPubMedCentral Gabory A, Roseboom TJ, Moore T et al (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4:5CrossRefPubMedPubMedCentral
34.
go back to reference Oster M, Trakooljul N, Reyer H et al (2017) Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs. Nutrients 9:74CrossRefPubMedCentral Oster M, Trakooljul N, Reyer H et al (2017) Sex-specific muscular maturation responses following prenatal exposure to methylation-related micronutrients in pigs. Nutrients 9:74CrossRefPubMedCentral
35.
36.
go back to reference Joubert BR, den Dekker HT, Felix JF et al (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577CrossRefPubMedPubMedCentral Joubert BR, den Dekker HT, Felix JF et al (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577CrossRefPubMedPubMedCentral
37.
go back to reference Beckett EL, Veysey M, Lucock M (2017) Folate and microRNA: bidirectional interactions. Clin Chim Acta Int J Clin Chem 474:60–66CrossRef Beckett EL, Veysey M, Lucock M (2017) Folate and microRNA: bidirectional interactions. Clin Chim Acta Int J Clin Chem 474:60–66CrossRef
39.
go back to reference Dwi Putra SE, Reichetzeder C, Meixner M et al (2017) DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy. J Hypertens 35:2276–2286CrossRefPubMed Dwi Putra SE, Reichetzeder C, Meixner M et al (2017) DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy. J Hypertens 35:2276–2286CrossRefPubMed
40.
go back to reference Hocher B, Adamski J (2017) Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 13:269–284CrossRefPubMed Hocher B, Adamski J (2017) Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 13:269–284CrossRefPubMed
41.
go back to reference Tsuprykov O, Ando R, Reichetzeder C et al (2016) The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. Kidney Int 89:1049–1061CrossRefPubMed Tsuprykov O, Ando R, Reichetzeder C et al (2016) The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. Kidney Int 89:1049–1061CrossRefPubMed
42.
go back to reference de Sousa Rodrigues ME, Bekhbat M, Houser MC et al (2017) Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun 59:158–172CrossRefPubMed de Sousa Rodrigues ME, Bekhbat M, Houser MC et al (2017) Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun 59:158–172CrossRefPubMed
45.
go back to reference Borengasser SJ, Kang P, Faske J et al (2014) High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9:e84209CrossRefPubMedPubMedCentral Borengasser SJ, Kang P, Faske J et al (2014) High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9:e84209CrossRefPubMedPubMedCentral
46.
go back to reference Williams L, Seki Y, Vuguin PM, Charron MJ (2014) Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta 1842:507–519CrossRefPubMed Williams L, Seki Y, Vuguin PM, Charron MJ (2014) Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta 1842:507–519CrossRefPubMed
48.
go back to reference Lövkvist C, Dodd IB, Sneppen K, Haerter JO (2016) DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res 44:5123–5132CrossRefPubMedPubMedCentral Lövkvist C, Dodd IB, Sneppen K, Haerter JO (2016) DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res 44:5123–5132CrossRefPubMedPubMedCentral
49.
go back to reference de Castro BT, Ingerslev LR, Alm PS et al (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–197CrossRef de Castro BT, Ingerslev LR, Alm PS et al (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–197CrossRef
50.
go back to reference Gapp K, Jawaid A, Sarkies P et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669CrossRefPubMedPubMedCentral Gapp K, Jawaid A, Sarkies P et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669CrossRefPubMedPubMedCentral
Metadata
Title
Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet
Authors
Jian Li
Yong-Ping Lu
Oleg Tsuprykov
Ahmed A. Hasan
Christoph Reichetzeder
Mei Tian
Xiao Li Zhang
Qin Zhang
Guo-Ying Sun
Jingli Guo
Mohamed M. S. Gaballa
Xiao-Ning Peng
Ge Lin
Berthold Hocher
Publication date
01-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4635-x

Other articles of this Issue 8/2018

Diabetologia 8/2018 Go to the issue

Up Front

Up front

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.