Skip to main content
Top
Published in: Diabetologia 9/2016

01-09-2016 | Article

RNA-binding protein CUGBP1 regulates insulin secretion via activation of phosphodiesterase 3B in mice

Authors: Kui Zhai, Lei Gu, Zhiguang Yang, Yang Mao, Meng Jin, Yan Chang, Qi Yuan, Veronique Leblais, Huiwen Wang, Rodolphe Fischmeister, Guangju Ji

Published in: Diabetologia | Issue 9/2016

Login to get access

Abstract

Aims/hypothesis

CUG-binding protein 1 (CUGBP1) is a multifunctional RNA-binding protein that regulates RNA processing at several stages including translation, deadenylation and alternative splicing, as well as RNA stability. Recent studies indicate that CUGBP1 may play a role in metabolic disorders. Our objective was to examine its role in endocrine pancreas function through gain- and loss-of-function experiments and to further decipher the underlying molecular mechanisms.

Methods

A mouse model in which type 2 diabetes was induced by a high-fat diet (HFD; 60% energy from fat) and mice on a standard chow diet (10% energy from fat) were compared. Pancreas-specific CUGBP1 overexpression and knockdown mice were generated. Different lengths of the phosphodiesterase subtype 3B (PDE3B) 3′ untranslated region (UTR) were cloned for luciferase reporter analysis. Purified CUGBP1 protein was used for gel shift experiments.

Results

CUGBP1 is present in rodent islets and in beta cell lines; it is overexpressed in the islets of diabetic mice. Compared with control mice, the plasma insulin level after a glucose load was significantly lower and glucose clearance was greatly delayed in mice with pancreas-specific CUGBP1 overexpression; the opposite results were obtained upon pancreas-specific CUGBP1 knockdown. Glucose- and glucagon-like peptide1 (GLP-1)-stimulated insulin secretion was significantly attenuated in mouse islets upon CUGBP1 overexpression. This was associated with a strong decrease in intracellular cAMP levels, pointing to a potential role for cAMP PDEs. CUGBP1 overexpression had no effect on the mRNA levels of PDE1A, 1C, 2A, 3A, 4A, 4B, 4D, 7A and 8B subtypes, but resulted in increased PDE3B expression. CUGBP1 was found to directly bind to a specific ATTTGTT sequence residing in the 3′ UTR of PDE3B and stabilised PDE3B mRNA. In the presence of the PDE3 inhibitor cilostamide, glucose- and GLP-1-stimulated insulin secretion was no longer reduced by CUGBP1 overexpression. Similar to CUGBP1, PDE3B was overexpressed in the islets of diabetic mice.

Conclusions/interpretation

We conclude that CUGBP1 is a critical regulator of insulin secretion via activating PDE3B. Repressing this protein might provide a potential strategy for treating type 2 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171CrossRefPubMed Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148:1160–1171CrossRefPubMed
2.
go back to reference Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53CrossRefPubMedPubMedCentral Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53CrossRefPubMedPubMedCentral
3.
go back to reference Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18:162–185CrossRefPubMed Prentki M, Matschinsky FM, Madiraju SR (2013) Metabolic signaling in fuel-induced insulin secretion. Cell Metab 18:162–185CrossRefPubMed
4.
go back to reference Dyachok O, Idevall-Hagren O, Sagetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37CrossRefPubMed Dyachok O, Idevall-Hagren O, Sagetorp J et al (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8:26–37CrossRefPubMed
5.
go back to reference Tian G, Sol ER, Xu Y, Shuai H, Tengholm A (2014) Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 64:904–915CrossRefPubMed Tian G, Sol ER, Xu Y, Shuai H, Tengholm A (2014) Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 64:904–915CrossRefPubMed
7.
go back to reference Tian G, Sagetorp J, Xu Y, Shuai H, Degerman E, Tengholm A (2012) Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion. J Cell Sci 125:5084–5095CrossRefPubMed Tian G, Sagetorp J, Xu Y, Shuai H, Degerman E, Tengholm A (2012) Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion. J Cell Sci 125:5084–5095CrossRefPubMed
8.
go back to reference Choi YH, Park S, Hockman S et al (2006) Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 116:3240–3251CrossRefPubMedPubMedCentral Choi YH, Park S, Hockman S et al (2006) Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice. J Clin Invest 116:3240–3251CrossRefPubMedPubMedCentral
9.
go back to reference Harndahl L, Wierup N, Enerback S et al (2004) Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem 279:15214–15222CrossRefPubMed Harndahl L, Wierup N, Enerback S et al (2004) Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem 279:15214–15222CrossRefPubMed
10.
go back to reference Dov A, Abramovitch E, Warwar N, Nesher R (2008) Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology 149:741–748CrossRefPubMed Dov A, Abramovitch E, Warwar N, Nesher R (2008) Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology 149:741–748CrossRefPubMed
11.
go back to reference Marchmont RJ, Houslay MD (1980) Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286:904–906CrossRefPubMed Marchmont RJ, Houslay MD (1980) Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286:904–906CrossRefPubMed
12.
go back to reference Ahmad F, Lindh R, Tang Y, Weston M, Degerman E, Manganiello VC (2007) Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem J 404:257–268CrossRefPubMedPubMedCentral Ahmad F, Lindh R, Tang Y, Weston M, Degerman E, Manganiello VC (2007) Insulin-induced formation of macromolecular complexes involved in activation of cyclic nucleotide phosphodiesterase 3B (PDE3B) and its interaction with PKB. Biochem J 404:257–268CrossRefPubMedPubMedCentral
13.
go back to reference Oknianska A, Zmuda-Trzebiatowska E, Manganiello V, Degerman E (2007) Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 353:1080–1085CrossRefPubMed Oknianska A, Zmuda-Trzebiatowska E, Manganiello V, Degerman E (2007) Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 353:1080–1085CrossRefPubMed
14.
go back to reference Ke B, Zhao Z, Ye X et al (2015) Inactivation of NF-kappaB p65 (RelA) in liver improved insulin sensitivity and inhibited cAMP/PKA pathway. Diabetes 64:3355–3362CrossRefPubMed Ke B, Zhao Z, Ye X et al (2015) Inactivation of NF-kappaB p65 (RelA) in liver improved insulin sensitivity and inhibited cAMP/PKA pathway. Diabetes 64:3355–3362CrossRefPubMed
15.
go back to reference Teplova M, Song J, Gaw HY, Teplov A, Patel DJ (2010) Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure 18:1364–1377CrossRefPubMedPubMedCentral Teplova M, Song J, Gaw HY, Teplov A, Patel DJ (2010) Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure 18:1364–1377CrossRefPubMedPubMedCentral
16.
go back to reference Masuda A, Andersen HS, Doktor TK et al (2012) CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci Rep 2:209PubMedPubMedCentral Masuda A, Andersen HS, Doktor TK et al (2012) CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Sci Rep 2:209PubMedPubMedCentral
17.
go back to reference Dasgupta T, Ladd AN (2012) The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA 3:104–121CrossRefPubMed Dasgupta T, Ladd AN (2012) The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA 3:104–121CrossRefPubMed
18.
go back to reference Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L, Timchenko LT (2004) Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem 279:13129–13139CrossRefPubMed Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L, Timchenko LT (2004) Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem 279:13129–13139CrossRefPubMed
19.
go back to reference Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37:1281–1286CrossRefPubMed Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37:1281–1286CrossRefPubMed
20.
go back to reference Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA (2010) CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet 19:3614–3622CrossRefPubMedPubMedCentral Ward AJ, Rimer M, Killian JM, Dowling JJ, Cooper TA (2010) CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum Mol Genet 19:3614–3622CrossRefPubMedPubMedCentral
22.
go back to reference Iakova P, Wang GL, Timchenko L et al (2004) Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. EMBO J 23:406–417CrossRefPubMedPubMedCentral Iakova P, Wang GL, Timchenko L et al (2004) Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. EMBO J 23:406–417CrossRefPubMedPubMedCentral
23.
go back to reference Kalsotra A, Xiao X, Ward AJ et al (2008) A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 105:20333–20338CrossRefPubMedPubMedCentral Kalsotra A, Xiao X, Ward AJ et al (2008) A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 105:20333–20338CrossRefPubMedPubMedCentral
24.
go back to reference Koshelev M, Sarma S, Price RE, Wehrens XH, Cooper TA (2010) Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 19:1066–1075CrossRefPubMedPubMedCentral Koshelev M, Sarma S, Price RE, Wehrens XH, Cooper TA (2010) Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 19:1066–1075CrossRefPubMedPubMedCentral
25.
go back to reference Giudice J, Xia Z, Wang ET et al (2014) Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat Commun 5:3603CrossRefPubMedPubMedCentral Giudice J, Xia Z, Wang ET et al (2014) Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat Commun 5:3603CrossRefPubMedPubMedCentral
26.
go back to reference House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V (2015) RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget 6:43620–43634PubMedPubMedCentral House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V (2015) RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget 6:43620–43634PubMedPubMedCentral
27.
go back to reference Sen S, Talukdar I, Webster NJ (2009) SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Mol Cell Biol 29:871–880CrossRefPubMed Sen S, Talukdar I, Webster NJ (2009) SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Mol Cell Biol 29:871–880CrossRefPubMed
28.
go back to reference Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47CrossRefPubMed Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47CrossRefPubMed
29.
go back to reference Verma SK, Deshmukh V, Liu P et al (2013) Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase C signaling. J Biol Chem 288:35372–35386CrossRefPubMedPubMedCentral Verma SK, Deshmukh V, Liu P et al (2013) Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase C signaling. J Biol Chem 288:35372–35386CrossRefPubMedPubMedCentral
30.
go back to reference Hinney A, Albayrak O, Antel J et al (2014) Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am J Med Genet B 165:283–293CrossRef Hinney A, Albayrak O, Antel J et al (2014) Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am J Med Genet B 165:283–293CrossRef
31.
go back to reference Fujii N, Ho RC, Manabe Y et al (2008) Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes 57:2958–2966CrossRefPubMedPubMedCentral Fujii N, Ho RC, Manabe Y et al (2008) Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes 57:2958–2966CrossRefPubMedPubMedCentral
32.
go back to reference Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53:1318–1325CrossRefPubMed Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53:1318–1325CrossRefPubMed
33.
go back to reference Zhai K, Chang Y, Wei B et al (2014) Phosphodiesterase types 3 and 4 regulate the phasic contraction of neonatal rat bladder smooth myocytes via distinct mechanisms. Cell Signal 26:1001–1010CrossRefPubMed Zhai K, Chang Y, Wei B et al (2014) Phosphodiesterase types 3 and 4 regulate the phasic contraction of neonatal rat bladder smooth myocytes via distinct mechanisms. Cell Signal 26:1001–1010CrossRefPubMed
34.
go back to reference Bindom SM, Hans CP, Xia HJ, Boulares H, Lazartigues E (2010) Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 59:2540–2548CrossRefPubMedPubMedCentral Bindom SM, Hans CP, Xia HJ, Boulares H, Lazartigues E (2010) Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 59:2540–2548CrossRefPubMedPubMedCentral
35.
go back to reference Zhai K, Hubert F, Nicolas V, Ji G, Fischmeister R, Leblais V (2012) beta-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells. PLoS One 7:e47826CrossRefPubMedPubMedCentral Zhai K, Hubert F, Nicolas V, Ji G, Fischmeister R, Leblais V (2012) beta-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells. PLoS One 7:e47826CrossRefPubMedPubMedCentral
36.
go back to reference Lee JE, Lee JY, Wilusz J, Tian B, Wilusz CJ (2010) Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 5:e11201CrossRefPubMedPubMedCentral Lee JE, Lee JY, Wilusz J, Tian B, Wilusz CJ (2010) Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 5:e11201CrossRefPubMedPubMedCentral
37.
go back to reference Lee J, Shin MK, Ryu DK, Kim S, Ryu WS (2010) Insertion and deletion mutagenesis by overlap extension PCR. Methods Mol Biol 634:137–146CrossRefPubMed Lee J, Shin MK, Ryu DK, Kim S, Ryu WS (2010) Insertion and deletion mutagenesis by overlap extension PCR. Methods Mol Biol 634:137–146CrossRefPubMed
38.
go back to reference Lu JY, Sewer MB (2015) p54(nrb)/NONO Regulates cyclic AMP-dependent glucocorticoid production by modulating phosphodiesterase mRNA splicing and degradation. Mol Cell Biol 35:1223–1237CrossRefPubMedPubMedCentral Lu JY, Sewer MB (2015) p54(nrb)/NONO Regulates cyclic AMP-dependent glucocorticoid production by modulating phosphodiesterase mRNA splicing and degradation. Mol Cell Biol 35:1223–1237CrossRefPubMedPubMedCentral
39.
go back to reference Meloni AR, DeYoung MB, Lowe C, Parkes DG (2013) GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. Diabetes Obes Metab 15:15–27CrossRefPubMed Meloni AR, DeYoung MB, Lowe C, Parkes DG (2013) GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. Diabetes Obes Metab 15:15–27CrossRefPubMed
40.
go back to reference Chen Z, Li Z, Wei B et al (2010) FKBP12.6-knockout mice display hyperinsulinemia and resistance to high-fat diet-induced hyperglycemia. FASEB J 24:357–363CrossRefPubMedPubMedCentral Chen Z, Li Z, Wei B et al (2010) FKBP12.6-knockout mice display hyperinsulinemia and resistance to high-fat diet-induced hyperglycemia. FASEB J 24:357–363CrossRefPubMedPubMedCentral
41.
go back to reference Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′,5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179:569–571CrossRefPubMed Charles MA, Fanska R, Schmid FG, Forsham PH, Grodsky GM (1973) Adenosine 3′,5′-monophosphate in pancreatic islets: glucose-induced insulin release. Science 179:569–571CrossRefPubMed
43.
go back to reference Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106CrossRefPubMed Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106CrossRefPubMed
44.
go back to reference Bakondi B, Lv W, Lu B et al (2015) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24:556–563CrossRefPubMed Bakondi B, Lv W, Lu B et al (2015) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24:556–563CrossRefPubMed
45.
go back to reference Pyne NJ, Furman BL (2003) Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46:1179–1189CrossRefPubMed Pyne NJ, Furman BL (2003) Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 46:1179–1189CrossRefPubMed
46.
go back to reference Harndahl L, Jing XJ, Ivarsson R et al (2002) Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem 277:37446–37455CrossRefPubMed Harndahl L, Jing XJ, Ivarsson R et al (2002) Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem 277:37446–37455CrossRefPubMed
47.
go back to reference Walz HA, Wierup N, Vikman J et al (2007) Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin. Cell Signal 19:1505–1513CrossRefPubMed Walz HA, Wierup N, Vikman J et al (2007) Beta-cell PDE3B regulates Ca2+-stimulated exocytosis of insulin. Cell Signal 19:1505–1513CrossRefPubMed
48.
go back to reference Zhao AZ, Zhao H, Teague J, Fujimoto W, Beavo JA (1997) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci U S A 94:3223–3228CrossRefPubMedPubMedCentral Zhao AZ, Zhao H, Teague J, Fujimoto W, Beavo JA (1997) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci U S A 94:3223–3228CrossRefPubMedPubMedCentral
49.
50.
go back to reference Wu X, Lan L, Wilson DM et al (2015) Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol 10:1476–1484CrossRefPubMedPubMedCentral Wu X, Lan L, Wilson DM et al (2015) Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol 10:1476–1484CrossRefPubMedPubMedCentral
Metadata
Title
RNA-binding protein CUGBP1 regulates insulin secretion via activation of phosphodiesterase 3B in mice
Authors
Kui Zhai
Lei Gu
Zhiguang Yang
Yang Mao
Meng Jin
Yan Chang
Qi Yuan
Veronique Leblais
Huiwen Wang
Rodolphe Fischmeister
Guangju Ji
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4005-5

Other articles of this Issue 9/2016

Diabetologia 9/2016 Go to the issue