Skip to main content
Top
Published in: Diabetologia 7/2016

Open Access 01-07-2016 | Article

Neuronal human BACE1 knockin induces systemic diabetes in mice

Authors: Kaja Plucińska, Ruta Dekeryte, David Koss, Kirsty Shearer, Nimesh Mody, Phillip D. Whitfield, Mary K. Doherty, Marco Mingarelli, Andy Welch, Gernot Riedel, Mirela Delibegovic, Bettina Platt

Published in: Diabetologia | Issue 7/2016

Login to get access

Abstract

Aims

β-Secretase 1 (BACE1) is a key enzyme in Alzheimer’s disease pathogenesis that catalyses the amyloidogenic cleavage of amyloid precursor protein (APP). Recently, global Bace1 deletion was shown to protect against diet-induced obesity and diabetes, suggesting that BACE1 is a potential regulator of glucose homeostasis. Here, we investigated whether increased neuronal BACE1 is sufficient to alter systemic glucose metabolism, using a neuron-specific human BACE1 knockin mouse model (PLB4).

Methods

Glucose homeostasis and adiposity were determined by glucose tolerance tests and EchoMRI, lipid species were measured by quantitative lipidomics, and biochemical and molecular alterations were assessed by western blotting, quantitative PCR and ELISAs. Glucose uptake in the brain and upper body was measured via 18FDG-PET imaging.

Results

Physiological and molecular analyses demonstrated that centrally expressed human BACE1 induced systemic glucose intolerance in mice from 4 months of age onward, alongside a fatty liver phenotype and impaired hepatic glycogen storage. This diabetic phenotype was associated with hypothalamic pathology, i.e. deregulation of the melanocortin system, and advanced endoplasmic reticulum (ER) stress indicated by elevated central C/EBP homologous protein (CHOP) signalling and hyperphosphorylation of its regulator eukaryotic translation initiation factor 2α (eIF2α). In vivo 18FDG-PET imaging further confirmed brain glucose hypometabolism in these mice; this corresponded with altered neuronal insulin-related signalling, enhanced protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4) levels, along with upregulation of the ribosomal protein and lipid translation machinery. Increased forebrain and plasma lipid accumulation (i.e. ceramides, triacylglycerols, phospholipids) was identified via lipidomics analysis.

Conclusions/interpretation

Our data reveal that neuronal BACE1 is a key regulator of metabolic homeostasis and provide a potential mechanism for the high prevalence of metabolic disturbance in Alzheimer’s disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu W, Von Strauss E, Cx Q, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039CrossRefPubMed Xu W, Von Strauss E, Cx Q, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039CrossRefPubMed
2.
go back to reference Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481CrossRefPubMed Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481CrossRefPubMed
3.
go back to reference Talbot K, Wang HY, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338CrossRefPubMedPubMedCentral Talbot K, Wang HY, Kazi H et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338CrossRefPubMedPubMedCentral
4.
go back to reference Prestia A, Caroli A, Wade SK et al (2015) Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer’s Dement 11:1191–1201CrossRef Prestia A, Caroli A, Wade SK et al (2015) Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer’s Dement 11:1191–1201CrossRef
5.
go back to reference Carvalho C, Machado N, Mota PC et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimer’s Dis 35:623–635 Carvalho C, Machado N, Mota PC et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimer’s Dis 35:623–635
6.
go back to reference Mody N, Agouni A, McIlroy GD, Platt B, Delibegovic M (2011) Susceptibility to diet-induced obesity and glucose intolerance in the APP (SWE)/PSEN1 (A246E) mouse model of Alzheimer’s disease is associated with increased brain levels of protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4), and basal phosphorylation of S6 ribosomal protein. Diabetologia 54:2143–2151CrossRefPubMed Mody N, Agouni A, McIlroy GD, Platt B, Delibegovic M (2011) Susceptibility to diet-induced obesity and glucose intolerance in the APP (SWE)/PSEN1 (A246E) mouse model of Alzheimer’s disease is associated with increased brain levels of protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4), and basal phosphorylation of S6 ribosomal protein. Diabetologia 54:2143–2151CrossRefPubMed
7.
go back to reference Vassar R, Bennett BD, Babu-Khan S et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741CrossRefPubMed Vassar R, Bennett BD, Babu-Khan S et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741CrossRefPubMed
8.
go back to reference Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381–1389CrossRefPubMed Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381–1389CrossRefPubMed
9.
go back to reference Holsinger RMD, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann Neurol 51:783–786CrossRefPubMed Holsinger RMD, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann Neurol 51:783–786CrossRefPubMed
10.
go back to reference Zhang X, Zhou K, Wang R et al (2007) Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 Expression and β-amyloid generation. J Biol Chem 282:10873–10880CrossRefPubMed Zhang X, Zhou K, Wang R et al (2007) Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 Expression and β-amyloid generation. J Biol Chem 282:10873–10880CrossRefPubMed
11.
12.
go back to reference Laird FM, Cai H, Savonenko AV et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709CrossRefPubMedPubMedCentral Laird FM, Cai H, Savonenko AV et al (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709CrossRefPubMedPubMedCentral
13.
go back to reference Plucinska K, Crouch B, Koss D et al (2014) Knock-in of human BACE1 cleaves murine APP and reiterates Alzheimer-like phenotypes. J Neurosci 34:10710–10728CrossRefPubMedPubMedCentral Plucinska K, Crouch B, Koss D et al (2014) Knock-in of human BACE1 cleaves murine APP and reiterates Alzheimer-like phenotypes. J Neurosci 34:10710–10728CrossRefPubMedPubMedCentral
14.
go back to reference Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2009) Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS One 4(12), E8477CrossRefPubMedPubMedCentral Hemming ML, Elias JE, Gygi SP, Selkoe DJ (2009) Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS One 4(12), E8477CrossRefPubMedPubMedCentral
15.
go back to reference Huse JT, Byant D, Yang Y et al (2003) Endoproteolysis of β-secretase (β-site amyloid precursor protein-cleaving enzyme) within its catalytic domain: a potential mechanism for regulation. J Biol Chem 278:17141–17149CrossRefPubMed Huse JT, Byant D, Yang Y et al (2003) Endoproteolysis of β-secretase (β-site amyloid precursor protein-cleaving enzyme) within its catalytic domain: a potential mechanism for regulation. J Biol Chem 278:17141–17149CrossRefPubMed
16.
go back to reference Sinha S, Anderson JP, Barbour R et al (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540CrossRefPubMed Sinha S, Anderson JP, Barbour R et al (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540CrossRefPubMed
17.
go back to reference Meakin PJ, Harper AJ, Hamilton DL et al (2012) Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem J 441:285–295CrossRefPubMed Meakin PJ, Harper AJ, Hamilton DL et al (2012) Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem J 441:285–295CrossRefPubMed
18.
go back to reference Guglielmotto M, Aragno M, Tamagno E et al (2012) AGEs/RAGE complex upregulates BACE1 via Nf-κB pathway activation. Neurobiol Aging 33:196.e13–196.e27CrossRef Guglielmotto M, Aragno M, Tamagno E et al (2012) AGEs/RAGE complex upregulates BACE1 via Nf-κB pathway activation. Neurobiol Aging 33:196.e13–196.e27CrossRef
19.
go back to reference Devi L, Alldred MJ, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 7, e32792CrossRefPubMedPubMedCentral Devi L, Alldred MJ, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 7, e32792CrossRefPubMedPubMedCentral
20.
go back to reference Owen C, Lees EK, Grant L et al (2013) Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia 56:2286–2296CrossRefPubMed Owen C, Lees EK, Grant L et al (2013) Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia 56:2286–2296CrossRefPubMed
21.
go back to reference Platt B, Drever B, Koss D et al (2011) Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One 6, e27068CrossRefPubMedPubMedCentral Platt B, Drever B, Koss D et al (2011) Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One 6, e27068CrossRefPubMedPubMedCentral
22.
go back to reference Welinder C, Ekblad L (2011) Coomassie staining as loading control in western blot analysis. J Proteome Res 10:1416–1419CrossRefPubMed Welinder C, Ekblad L (2011) Coomassie staining as loading control in western blot analysis. J Proteome Res 10:1416–1419CrossRefPubMed
23.
go back to reference McIlroy GD, Delibegovic M, Owen C et al (2013) Fenretinide treatment prevents diet-induced obesity in association with major alterations in retinoid homeostatic gene expression in adipose, liver, and hypothalamus. Diabetes 62:825–836CrossRefPubMedPubMedCentral McIlroy GD, Delibegovic M, Owen C et al (2013) Fenretinide treatment prevents diet-induced obesity in association with major alterations in retinoid homeostatic gene expression in adipose, liver, and hypothalamus. Diabetes 62:825–836CrossRefPubMedPubMedCentral
24.
go back to reference Bence KK, Delibegovic M, Xue B et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924CrossRefPubMed Bence KK, Delibegovic M, Xue B et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924CrossRefPubMed
25.
go back to reference Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMed Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMed
26.
go back to reference Taskinen MR, Borén J (2015) New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239:483–495CrossRefPubMed Taskinen MR, Borén J (2015) New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239:483–495CrossRefPubMed
27.
go back to reference Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20:415–418CrossRefPubMed Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20:415–418CrossRefPubMed
29.
go back to reference Norseen J, Hosooka T, Hammarstedt A et al (2012) Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and Toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 32:2010–2019CrossRefPubMedPubMedCentral Norseen J, Hosooka T, Hammarstedt A et al (2012) Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and Toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol 32:2010–2019CrossRefPubMedPubMedCentral
30.
go back to reference Hoffmeister A, Tuennemann J, Sommerer I et al (2013) Genetic and biochemical evidence for a functional role of BACE1 in the regulation of insulin mRNA expression. Obesity 21:E626–E633CrossRefPubMed Hoffmeister A, Tuennemann J, Sommerer I et al (2013) Genetic and biochemical evidence for a functional role of BACE1 in the regulation of insulin mRNA expression. Obesity 21:E626–E633CrossRefPubMed
33.
go back to reference González-Domínguez R, García-Barrera T, Gómez-Ariza JL (2014) Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal 98:321–326CrossRefPubMed González-Domínguez R, García-Barrera T, Gómez-Ariza JL (2014) Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal 98:321–326CrossRefPubMed
34.
go back to reference Proitsi P, Kim M, Whiley L et al (2015) Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry 5, E494CrossRefPubMedPubMedCentral Proitsi P, Kim M, Whiley L et al (2015) Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry 5, E494CrossRefPubMedPubMedCentral
35.
go back to reference Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatr 27:270–278CrossRefPubMed Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatr 27:270–278CrossRefPubMed
36.
go back to reference Bennett SAL, Valenzuela N, Xu H, Franko B, Fai S, Figeys D (2013) Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s disease. Front Physiol 4:168CrossRefPubMedPubMedCentral Bennett SAL, Valenzuela N, Xu H, Franko B, Fai S, Figeys D (2013) Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s disease. Front Physiol 4:168CrossRefPubMedPubMedCentral
37.
go back to reference Yadav RS, Tiwari NK (2014) Lipid integration in neurodegeneration: an overview of Alzheimer’s disease. Mol Neurobiol 50:168–176CrossRefPubMed Yadav RS, Tiwari NK (2014) Lipid integration in neurodegeneration: an overview of Alzheimer’s disease. Mol Neurobiol 50:168–176CrossRefPubMed
38.
go back to reference Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075CrossRefPubMedPubMedCentral Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075CrossRefPubMedPubMedCentral
39.
go back to reference Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818CrossRefPubMed Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818CrossRefPubMed
40.
go back to reference Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis. J Biol Chem 278:19777–19783CrossRefPubMed Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis. J Biol Chem 278:19777–19783CrossRefPubMed
41.
go back to reference Jana A, Pahan K (2004) Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase: implications for Alzheimer’s disease. J Biol Chem 279:51451–51459CrossRefPubMedPubMedCentral Jana A, Pahan K (2004) Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase: implications for Alzheimer’s disease. J Biol Chem 279:51451–51459CrossRefPubMedPubMedCentral
42.
go back to reference Contreras C, González-García I, Martínez-Sánchez N et al (2014) Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep 9:366–377CrossRefPubMed Contreras C, González-García I, Martínez-Sánchez N et al (2014) Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep 9:366–377CrossRefPubMed
43.
go back to reference Roberts RO, Knopman DS, Cha RH et al (2014) Diabetes and elevated hemoglobin a1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med 55:759–764CrossRefPubMedPubMedCentral Roberts RO, Knopman DS, Cha RH et al (2014) Diabetes and elevated hemoglobin a1c levels are associated with brain hypometabolism but not amyloid accumulation. J Nucl Med 55:759–764CrossRefPubMedPubMedCentral
44.
go back to reference Kazemi S, Mounir Z, Baltzis D et al (2007) A novel function of EIF2α kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol Biol Cell 18:3635–3644CrossRefPubMedPubMedCentral Kazemi S, Mounir Z, Baltzis D et al (2007) A novel function of EIF2α kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol Biol Cell 18:3635–3644CrossRefPubMedPubMedCentral
45.
go back to reference Loskutova N, Honea RA, Brooks WM, Burns JM (2010) Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer’s disease. J Alzheimer’s Dis 20:313–322 Loskutova N, Honea RA, Brooks WM, Burns JM (2010) Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer’s disease. J Alzheimer’s Dis 20:313–322
46.
go back to reference Fronczek R, Van Geest S, Frölich M, Overeem S, Roelandse FWC, Lammers GJ et al (2012) Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33:1642–1650CrossRefPubMed Fronczek R, Van Geest S, Frölich M, Overeem S, Roelandse FWC, Lammers GJ et al (2012) Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33:1642–1650CrossRefPubMed
47.
go back to reference Clarke JR, Lyra E, Silva NM, Figueiredo CP et al (2015) Alzheimer-associated αβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7:190–210CrossRefPubMedPubMedCentral Clarke JR, Lyra E, Silva NM, Figueiredo CP et al (2015) Alzheimer-associated αβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7:190–210CrossRefPubMedPubMedCentral
48.
go back to reference Çakir I, Cyr NE, Perello M, Litvinov BP, Romero A, Stuart RC et al (2013) Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J Biol Chem 288:17675–17688CrossRefPubMedPubMedCentral Çakir I, Cyr NE, Perello M, Litvinov BP, Romero A, Stuart RC et al (2013) Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J Biol Chem 288:17675–17688CrossRefPubMedPubMedCentral
49.
go back to reference Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A 108:2939–2944CrossRefPubMedPubMedCentral Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A 108:2939–2944CrossRefPubMedPubMedCentral
Metadata
Title
Neuronal human BACE1 knockin induces systemic diabetes in mice
Authors
Kaja Plucińska
Ruta Dekeryte
David Koss
Kirsty Shearer
Nimesh Mody
Phillip D. Whitfield
Mary K. Doherty
Marco Mingarelli
Andy Welch
Gernot Riedel
Mirela Delibegovic
Bettina Platt
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3960-1

Other articles of this Issue 7/2016

Diabetologia 7/2016 Go to the issue