Skip to main content
Top
Published in: Diabetologia 6/2016

Open Access 01-06-2016 | Review

Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues

Authors: Vanessa Pellegrinelli, Stefania Carobbio, Antonio Vidal-Puig

Published in: Diabetologia | Issue 6/2016

Login to get access

Abstract

White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Literature
1.
go back to reference Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205:194–208CrossRef Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205:194–208CrossRef
2.
go back to reference Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344PubMedPubMedCentralCrossRef Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344PubMedPubMedCentralCrossRef
3.
go back to reference Lolmède K, Duffaut C, Zakaroff-Girard A, Bouloumié A (2011) Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab 37:283–290PubMedCrossRef Lolmède K, Duffaut C, Zakaroff-Girard A, Bouloumié A (2011) Immune cells in adipose tissue: key players in metabolic disorders. Diabetes Metab 37:283–290PubMedCrossRef
4.
go back to reference Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18:478–489PubMedCrossRef Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18:478–489PubMedCrossRef
8.
go back to reference Kim J-Y, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedPubMedCentralCrossRef Kim J-Y, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedPubMedCentralCrossRef
9.
go back to reference Foster MT, Shi H, Seeley RJ, Woods SC (2011) Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiol Behav 104:845–854PubMedPubMedCentralCrossRef Foster MT, Shi H, Seeley RJ, Woods SC (2011) Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiol Behav 104:845–854PubMedPubMedCentralCrossRef
10.
go back to reference Hocking SL, Stewart RL, Brandon AE et al (2015) Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia 58:1587–1600PubMedCrossRef Hocking SL, Stewart RL, Brandon AE et al (2015) Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia 58:1587–1600PubMedCrossRef
11.
12.
go back to reference van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef
13.
go back to reference Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRef Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRef
14.
15.
go back to reference Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18PubMedCrossRef Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18PubMedCrossRef
17.
go back to reference Orava J, Nuutila P, Lidell ME et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279PubMedCrossRef Orava J, Nuutila P, Lidell ME et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279PubMedCrossRef
19.
20.
go back to reference Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10:1–11PubMedCrossRef Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10:1–11PubMedCrossRef
21.
go back to reference Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4:211–232PubMedCrossRef Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4:211–232PubMedCrossRef
22.
go back to reference Contreras GA, Lee Y-H, Mottillo EP, Granneman JG (2014) Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 307:E793–E799PubMedPubMedCentralCrossRef Contreras GA, Lee Y-H, Mottillo EP, Granneman JG (2014) Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 307:E793–E799PubMedPubMedCentralCrossRef
23.
go back to reference Atit R, Sgaier SK, Mohamed OA et al (2006) Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296:164–176PubMedCrossRef Atit R, Sgaier SK, Mohamed OA et al (2006) Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296:164–176PubMedCrossRef
24.
26.
go back to reference Sanchez-Gurmaches J, Hung C-M, Sparks CA et al (2012) PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 16:348–362PubMedPubMedCentralCrossRef Sanchez-Gurmaches J, Hung C-M, Sparks CA et al (2012) PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 16:348–362PubMedPubMedCentralCrossRef
27.
go back to reference Billon N, Iannarelli P, Monteiro MC et al (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292PubMedCrossRef Billon N, Iannarelli P, Monteiro MC et al (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292PubMedCrossRef
28.
go back to reference Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388PubMedCrossRef Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388PubMedCrossRef
29.
go back to reference Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249PubMedCrossRef Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249PubMedCrossRef
30.
go back to reference Gupta RK, Mepani RJ, Kleiner S et al (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15:230–239PubMedPubMedCentralCrossRef Gupta RK, Mepani RJ, Kleiner S et al (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15:230–239PubMedPubMedCentralCrossRef
31.
go back to reference Tran K-V, Gealekman O, Frontini A et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229PubMedPubMedCentralCrossRef Tran K-V, Gealekman O, Frontini A et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229PubMedPubMedCentralCrossRef
32.
go back to reference Shan T, Liu W, Kuang S (2013) Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J 27:277–287PubMedPubMedCentralCrossRef Shan T, Liu W, Kuang S (2013) Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J 27:277–287PubMedPubMedCentralCrossRef
33.
go back to reference Hong KY, Bae H, Park I et al (2015) Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142:2623–2632PubMedCrossRef Hong KY, Bae H, Park I et al (2015) Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142:2623–2632PubMedCrossRef
35.
go back to reference Chau Y-Y, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375PubMedPubMedCentralCrossRef Chau Y-Y, Bandiera R, Serrels A et al (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375PubMedPubMedCentralCrossRef
36.
go back to reference Sanchez-Gurmaches J, Hsiao W-Y, Guertin DA (2015) Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep 4:541–550CrossRef Sanchez-Gurmaches J, Hsiao W-Y, Guertin DA (2015) Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep 4:541–550CrossRef
37.
go back to reference Petrovic N, Walden TB, Shabalina IG et al (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164PubMedPubMedCentralCrossRef Petrovic N, Walden TB, Shabalina IG et al (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164PubMedPubMedCentralCrossRef
39.
go back to reference van der Lans AAJJ, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403PubMedPubMedCentralCrossRef van der Lans AAJJ, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403PubMedPubMedCentralCrossRef
40.
go back to reference Sidossis LS, Porter C, Saraf MK et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227PubMedCrossRef Sidossis LS, Porter C, Saraf MK et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227PubMedCrossRef
41.
go back to reference Lee Y-H, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491PubMedPubMedCentralCrossRef Lee Y-H, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491PubMedPubMedCentralCrossRef
42.
go back to reference Sengenès C, Lolmède K, Zakaroff-Girard A et al (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122PubMedCrossRef Sengenès C, Lolmède K, Zakaroff-Girard A et al (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122PubMedCrossRef
43.
go back to reference Elabd C, Chiellini C, Carmona M et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760PubMedCrossRef Elabd C, Chiellini C, Carmona M et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760PubMedCrossRef
44.
go back to reference Estève D, Boulet N, Volat F et al (2015) Human white and brite adipogenesis is supported by MSCA1 and is impaired by immune cells. Stem Cells 33:1277–1291PubMedCrossRef Estève D, Boulet N, Volat F et al (2015) Human white and brite adipogenesis is supported by MSCA1 and is impaired by immune cells. Stem Cells 33:1277–1291PubMedCrossRef
45.
go back to reference Liu W, Shan T, Yang X et al (2013) A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J Cell Sci 126:3527–3532PubMedPubMedCentralCrossRef Liu W, Shan T, Yang X et al (2013) A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J Cell Sci 126:3527–3532PubMedPubMedCentralCrossRef
46.
47.
48.
go back to reference Suenaga M, Kurosawa N, Asano H et al (2013) Bmp4 expressed in preadipocytes is required for the onset of adipocyte differentiation. Cytokine 64:138–145PubMedCrossRef Suenaga M, Kurosawa N, Asano H et al (2013) Bmp4 expressed in preadipocytes is required for the onset of adipocyte differentiation. Cytokine 64:138–145PubMedCrossRef
49.
go back to reference Huang H, Song T-J, Li X et al (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A 106:12670–12675PubMedPubMedCentralCrossRef Huang H, Song T-J, Li X et al (2009) BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A 106:12670–12675PubMedPubMedCentralCrossRef
50.
go back to reference Shao X, Wang M, Wei X et al (2015) Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther 11:282–289CrossRef Shao X, Wang M, Wei X et al (2015) Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther 11:282–289CrossRef
51.
go back to reference Tseng Y-H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedPubMedCentralCrossRef Tseng Y-H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedPubMedCentralCrossRef
52.
go back to reference Sharma A, Huard C, Vernochet C et al (2014) Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS One 9:e92608PubMedPubMedCentralCrossRef Sharma A, Huard C, Vernochet C et al (2014) Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS One 9:e92608PubMedPubMedCentralCrossRef
53.
go back to reference Whittle AJ, Carobbio S, Martins L et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885PubMedPubMedCentralCrossRef Whittle AJ, Carobbio S, Martins L et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885PubMedPubMedCentralCrossRef
54.
go back to reference Lidell ME, Seifert EL, Westergren R et al (2011) The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes 60:427–435PubMedPubMedCentralCrossRef Lidell ME, Seifert EL, Westergren R et al (2011) The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes 60:427–435PubMedPubMedCentralCrossRef
55.
go back to reference Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667PubMedCrossRef Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667PubMedCrossRef
56.
go back to reference Wang QA, Tao C, Jiang L et al (2015) Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat Cell Biol 17:1099–1111PubMedPubMedCentralCrossRef Wang QA, Tao C, Jiang L et al (2015) Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat Cell Biol 17:1099–1111PubMedPubMedCentralCrossRef
57.
go back to reference Gustafson B, Hammarstedt A, Hedjazifar S et al (2015) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64:1670–1681PubMedCrossRef Gustafson B, Hammarstedt A, Hedjazifar S et al (2015) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64:1670–1681PubMedCrossRef
58.
go back to reference Schulz TJ, Huang TL, Tran TT et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108:143–148PubMedPubMedCentralCrossRef Schulz TJ, Huang TL, Tran TT et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108:143–148PubMedPubMedCentralCrossRef
59.
go back to reference Kuo MM-C, Kim S, Tseng C-Y et al (2014) BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 35:3172–3179PubMedCrossRef Kuo MM-C, Kim S, Tseng C-Y et al (2014) BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 35:3172–3179PubMedCrossRef
60.
go back to reference Masaki T, Chiba S, Yasuda T et al (2003) Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52:2266–2273PubMedCrossRef Masaki T, Chiba S, Yasuda T et al (2003) Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52:2266–2273PubMedCrossRef
61.
go back to reference Knudsen JG, Murholm M, Carey AL et al (2014) Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 9:e84910PubMedPubMedCentralCrossRef Knudsen JG, Murholm M, Carey AL et al (2014) Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 9:e84910PubMedPubMedCentralCrossRef
62.
go back to reference Than A, He HL, Chua SH et al (2015) Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290:14679–14691PubMedCrossRef Than A, He HL, Chua SH et al (2015) Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290:14679–14691PubMedCrossRef
63.
go back to reference Than A, Cheng Y, Foh L-C et al (2012) Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 362:227–241PubMedCrossRef Than A, Cheng Y, Foh L-C et al (2012) Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 362:227–241PubMedCrossRef
64.
go back to reference Gealekman O, Burkart A, Chouinard M et al (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295:E1056–E1064PubMedPubMedCentralCrossRef Gealekman O, Burkart A, Chouinard M et al (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295:E1056–E1064PubMedPubMedCentralCrossRef
66.
go back to reference McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495PubMedCrossRef McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495PubMedCrossRef
67.
go back to reference Bauters D, Van Hul M, Lijnen HR (2013) Macrophage elastase (MMP-12) in expanding murine adipose tissue. Biochim Biophys Acta 1830:2954–2959PubMedCrossRef Bauters D, Van Hul M, Lijnen HR (2013) Macrophage elastase (MMP-12) in expanding murine adipose tissue. Biochim Biophys Acta 1830:2954–2959PubMedCrossRef
69.
go back to reference Mori S, Kiuchi S, Ouchi A et al (2014) Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. Int J Biol Sci 10:825–833PubMedPubMedCentralCrossRef Mori S, Kiuchi S, Ouchi A et al (2014) Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. Int J Biol Sci 10:825–833PubMedPubMedCentralCrossRef
70.
go back to reference Smith SR, De Jonge L, Volaufova J et al (2005) Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metab Clin Exp 54:24–32PubMedCrossRef Smith SR, De Jonge L, Volaufova J et al (2005) Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metab Clin Exp 54:24–32PubMedCrossRef
71.
go back to reference Macotela Y, Emanuelli B, Mori MA et al (2012) Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61:1691–1699PubMedPubMedCentralCrossRef Macotela Y, Emanuelli B, Mori MA et al (2012) Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61:1691–1699PubMedPubMedCentralCrossRef
72.
go back to reference Jeffery E, Church CD, Holtrup B et al (2015) Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol 17:376–385PubMedPubMedCentralCrossRef Jeffery E, Church CD, Holtrup B et al (2015) Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol 17:376–385PubMedPubMedCentralCrossRef
73.
go back to reference Joe AWB, Yi L, Even Y et al (2009) Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27:2563–2570PubMedCrossRef Joe AWB, Yi L, Even Y et al (2009) Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27:2563–2570PubMedCrossRef
74.
go back to reference Weyer C, Foley JE, Bogardus C et al (2000) Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43:1498–1506PubMedCrossRef Weyer C, Foley JE, Bogardus C et al (2000) Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43:1498–1506PubMedCrossRef
75.
go back to reference Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033PubMedCrossRef Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033PubMedCrossRef
76.
go back to reference Fang L, Guo F, Zhou L et al (2015) The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans. Adipocyte 4:273–279PubMedPubMedCentralCrossRef Fang L, Guo F, Zhou L et al (2015) The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans. Adipocyte 4:273–279PubMedPubMedCentralCrossRef
77.
go back to reference van Beek L, van Klinken JB, Pronk ACM et al (2015) The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia 58:1601–1609PubMedPubMedCentralCrossRef van Beek L, van Klinken JB, Pronk ACM et al (2015) The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia 58:1601–1609PubMedPubMedCentralCrossRef
78.
go back to reference Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918PubMedCrossRef Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918PubMedCrossRef
79.
go back to reference Tchoukalova YD, Koutsari C, Votruba SB et al (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring) 18:1875–1880CrossRef Tchoukalova YD, Koutsari C, Votruba SB et al (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring) 18:1875–1880CrossRef
80.
go back to reference Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedCrossRef Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedCrossRef
81.
go back to reference Kim SM, Lun M, Wang M et al (2014) Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab 20:1049–1058PubMedPubMedCentralCrossRef Kim SM, Lun M, Wang M et al (2014) Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab 20:1049–1058PubMedPubMedCentralCrossRef
82.
go back to reference Arner P, Andersson DP, Thörne A et al (2013) Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab 98:E897–901PubMedCrossRef Arner P, Andersson DP, Thörne A et al (2013) Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab 98:E897–901PubMedCrossRef
83.
go back to reference Crossno JT, Majka SM, Grazia T et al (2006) Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest 116:3220–3228PubMedPubMedCentralCrossRef Crossno JT, Majka SM, Grazia T et al (2006) Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest 116:3220–3228PubMedPubMedCentralCrossRef
84.
go back to reference Majka SM, Fox KE, Psilas JC et al (2010) De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proc Natl Acad Sci U S A 107:14781–14786PubMedPubMedCentralCrossRef Majka SM, Fox KE, Psilas JC et al (2010) De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proc Natl Acad Sci U S A 107:14781–14786PubMedPubMedCentralCrossRef
85.
go back to reference Rydén M, Uzunel M, Hård JL et al (2015) Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab 22:408–417PubMedCrossRef Rydén M, Uzunel M, Hård JL et al (2015) Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab 22:408–417PubMedCrossRef
86.
go back to reference Dubois SG, Heilbronn LK, Smith SR et al (2006) Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring) 14:1543–1552CrossRef Dubois SG, Heilbronn LK, Smith SR et al (2006) Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring) 14:1543–1552CrossRef
87.
go back to reference Tchoukalova Y, Koutsari C, Jensen M (2007) Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 50:151–157PubMedCrossRef Tchoukalova Y, Koutsari C, Jensen M (2007) Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 50:151–157PubMedCrossRef
88.
go back to reference Lessard J, Laforest S, Pelletier M et al (2014) Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte 3:197–205PubMedPubMedCentralCrossRef Lessard J, Laforest S, Pelletier M et al (2014) Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte 3:197–205PubMedPubMedCentralCrossRef
89.
go back to reference Tesz GJ, Guilherme A, Guntur KVP et al (2007) Tumor necrosis factor α (TNFα) stimulates Map4k4 expression through TNFα receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem 282:19302–19312PubMedCrossRef Tesz GJ, Guilherme A, Guntur KVP et al (2007) Tumor necrosis factor α (TNFα) stimulates Map4k4 expression through TNFα receptor 1 signaling to c-Jun and activating transcription factor 2. J Biol Chem 282:19302–19312PubMedCrossRef
90.
go back to reference Gustafson B, Hedjazifar S, Gogg S et al (2015) Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 26:193–200PubMedCrossRef Gustafson B, Hedjazifar S, Gogg S et al (2015) Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 26:193–200PubMedCrossRef
91.
go back to reference Lacasa D, Taleb S, Keophiphath M et al (2007) Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148:868–877PubMedCrossRef Lacasa D, Taleb S, Keophiphath M et al (2007) Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148:868–877PubMedCrossRef
92.
go back to reference Roberts-Toler C, O’Neill BT, Cypess AM (2015) Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring) 23:1765–1770CrossRef Roberts-Toler C, O’Neill BT, Cypess AM (2015) Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring) 23:1765–1770CrossRef
93.
go back to reference Sakamoto T, Takahashi N, Sawaragi Y et al (2013) Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol 304:C729–C738PubMedPubMedCentralCrossRef Sakamoto T, Takahashi N, Sawaragi Y et al (2013) Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol 304:C729–C738PubMedPubMedCentralCrossRef
94.
go back to reference Wernstedt Asterholm I, Tao C, Morley TS et al (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–118PubMedCrossRef Wernstedt Asterholm I, Tao C, Morley TS et al (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–118PubMedCrossRef
95.
go back to reference Abdennour M, Reggio S, Le Naour G et al (2014) Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab 99:898–907 Abdennour M, Reggio S, Le Naour G et al (2014) Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab 99:898–907
96.
go back to reference Iwayama T, Steele C, Yao L et al (2015) PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev 29:1106–1119PubMedPubMedCentralCrossRef Iwayama T, Steele C, Yao L et al (2015) PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev 29:1106–1119PubMedPubMedCentralCrossRef
97.
go back to reference Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15:255–273PubMedCrossRef Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15:255–273PubMedCrossRef
99.
go back to reference Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299:E1016–E1027PubMedPubMedCentralCrossRef Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299:E1016–E1027PubMedPubMedCentralCrossRef
100.
101.
go back to reference Pellegrinelli V, Heuvingh J, du Roure O et al (2014) Human adipocyte function is impacted by mechanical cues. J Pathol 233:183–195PubMedCrossRef Pellegrinelli V, Heuvingh J, du Roure O et al (2014) Human adipocyte function is impacted by mechanical cues. J Pathol 233:183–195PubMedCrossRef
102.
go back to reference Dalmas E, Toubal A, Alzaid F et al (2015) Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 21:610–618PubMedCrossRef Dalmas E, Toubal A, Alzaid F et al (2015) Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 21:610–618PubMedCrossRef
103.
go back to reference Craft CS, Pietka TA, Schappe T et al (2014) The extracellular matrix protein MAGP1 supports thermogenesis and protects against obesity and diabetes through regulation of TGF-β. Diabetes 63:1920–1932PubMedPubMedCentralCrossRef Craft CS, Pietka TA, Schappe T et al (2014) The extracellular matrix protein MAGP1 supports thermogenesis and protects against obesity and diabetes through regulation of TGF-β. Diabetes 63:1920–1932PubMedPubMedCentralCrossRef
104.
go back to reference Sun K, Park J, Gupta OT et al (2014) Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun 5:3485PubMedPubMedCentral Sun K, Park J, Gupta OT et al (2014) Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun 5:3485PubMedPubMedCentral
105.
go back to reference Bagchi M, Kim LA, Boucher J et al (2013) Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J 27:3257–3271PubMedPubMedCentralCrossRef Bagchi M, Kim LA, Boucher J et al (2013) Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J 27:3257–3271PubMedPubMedCentralCrossRef
106.
go back to reference Prunet-Marcassus B, Cousin B, Caton D et al (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312:727–736PubMedCrossRef Prunet-Marcassus B, Cousin B, Caton D et al (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312:727–736PubMedCrossRef
107.
go back to reference Hames KC, Koutsari C, Santosa S et al (2015) Adipose tissue fatty acid storage factors: effects of depot, sex and fat cell size. Int J Obes (Lond) 39:884–887CrossRef Hames KC, Koutsari C, Santosa S et al (2015) Adipose tissue fatty acid storage factors: effects of depot, sex and fat cell size. Int J Obes (Lond) 39:884–887CrossRef
108.
go back to reference Meyer LK, Ciaraldi TP, Henry RR et al (2013) Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2:217–226PubMedPubMedCentralCrossRef Meyer LK, Ciaraldi TP, Henry RR et al (2013) Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2:217–226PubMedPubMedCentralCrossRef
109.
go back to reference Zhang Y, Zitsman JL, Hou J et al (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22:691–697CrossRef Zhang Y, Zitsman JL, Hou J et al (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22:691–697CrossRef
110.
go back to reference Villaret A, Galitzky J, Decaunes P et al (2010) Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59:2755–2763PubMedPubMedCentralCrossRef Villaret A, Galitzky J, Decaunes P et al (2010) Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59:2755–2763PubMedPubMedCentralCrossRef
111.
go back to reference Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297:E977–E986PubMedCrossRef Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297:E977–E986PubMedCrossRef
112.
go back to reference Gealekman O, Guseva N, Hartigan C et al (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123:186–194PubMedPubMedCentralCrossRef Gealekman O, Guseva N, Hartigan C et al (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123:186–194PubMedPubMedCentralCrossRef
113.
go back to reference Xue Y, Lim S, Bråkenhielm E, Cao Y (2010) Adipose angiogenesis: quantitative methods to study microvessel growth, regression and remodeling in vivo. Nat Protoc 5:912–920PubMedCrossRef Xue Y, Lim S, Bråkenhielm E, Cao Y (2010) Adipose angiogenesis: quantitative methods to study microvessel growth, regression and remodeling in vivo. Nat Protoc 5:912–920PubMedCrossRef
114.
go back to reference Rosell M, Kaforou M, Frontini A et al (2014) Brown and white adipose tissues. Intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945–E964PubMedPubMedCentralCrossRef Rosell M, Kaforou M, Frontini A et al (2014) Brown and white adipose tissues. Intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945–E964PubMedPubMedCentralCrossRef
115.
go back to reference Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178PubMedPubMedCentralCrossRef Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178PubMedPubMedCentralCrossRef
116.
go back to reference Kranendonk MEG, van Herwaarden JA, Stupkova T et al (2015) Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease: distinct fat depots and vascular risk factors. Atherosclerosis 239:419–427PubMedCrossRef Kranendonk MEG, van Herwaarden JA, Stupkova T et al (2015) Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease: distinct fat depots and vascular risk factors. Atherosclerosis 239:419–427PubMedCrossRef
117.
go back to reference Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561PubMedCrossRef Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561PubMedCrossRef
118.
go back to reference Fitzgibbons TP, Kogan S, Aouadi M et al (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425–H1437PubMedPubMedCentralCrossRef Fitzgibbons TP, Kogan S, Aouadi M et al (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425–H1437PubMedPubMedCentralCrossRef
119.
go back to reference McCulloch LJ, Rawling TJ, Sjöholm K et al (2015) COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity. Endocrinology 156:134–146PubMedCrossRef McCulloch LJ, Rawling TJ, Sjöholm K et al (2015) COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity. Endocrinology 156:134–146PubMedCrossRef
120.
go back to reference Roca-Rivada A, Belen Bravo S, Pérez-Sotelo D et al (2015) CILAIR-based secretome analysis of obese visceral and subcutaneous adipose tissues reveals distinctive ECM Remodeling and Inflammation Mediators. Sci Rep 5:12214PubMedPubMedCentralCrossRef Roca-Rivada A, Belen Bravo S, Pérez-Sotelo D et al (2015) CILAIR-based secretome analysis of obese visceral and subcutaneous adipose tissues reveals distinctive ECM Remodeling and Inflammation Mediators. Sci Rep 5:12214PubMedPubMedCentralCrossRef
Metadata
Title
Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues
Authors
Vanessa Pellegrinelli
Stefania Carobbio
Antonio Vidal-Puig
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3933-4

Other articles of this Issue 6/2016

Diabetologia 6/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.