Skip to main content
Top
Published in: Diabetologia 5/2016

01-05-2016 | Mini-Review

Renaissance of leptin for obesity therapy

Authors: Carmelo Quarta, Miguel A. Sánchez-Garrido, Matthias H. Tschöp, Christoffer Clemmensen

Published in: Diabetologia | Issue 5/2016

Login to get access

Abstract

Diet-induced obesity and its metabolic comorbidities constitute an overwhelming health crisis and there is an urgent need for safe and effective pharmacological interventions. Being largely shelved for decades, scientists are now revisiting the anti-obesity virtues of leptin. Whereas it remains evident that leptin as a stand-alone therapy is not an effective approach, the potential for employing sensitising pharmacology to unleash the weight-lowering properties of leptin has injected new hope into the field. Fascinatingly, these leptin-sensitising agents seem to act via distinct metabolic pathways and may thus, in parallel with their clinical development, serve as important research tools to progress our understanding of the molecular, physiological and behavioural pathways underlying energy homeostasis and obesity pathophysiology. This review summarises a presentation given at the ‘Is leptin coming back?’ symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Thomas Meek and Gregory Morton, DOI: 10.​1007/​s00125-016-3898-3, and by Gerald Shulman and colleagues, DOI: 10.​1007/​s00125-016-3909-4) and an overview by the Session Chair, Ulf Smith (DOI: 10.​1007/​s00125-016-3894-7).
Literature
1.
2.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMed Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMed
3.
go back to reference Heymsfield SB, Greenberg AS, Fujioka K et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575CrossRefPubMed Heymsfield SB, Greenberg AS, Fujioka K et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575CrossRefPubMed
4.
go back to reference Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 21:643–651CrossRefPubMedPubMedCentral Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 21:643–651CrossRefPubMedPubMedCentral
5.
go back to reference Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578CrossRefPubMed Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578CrossRefPubMed
6.
go back to reference Farooqi IS, Jebb SA, Langmack G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884CrossRefPubMed Farooqi IS, Jebb SA, Langmack G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884CrossRefPubMed
7.
go back to reference Farooqi IS, Matarese G, Lord GM et al (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103CrossRefPubMedPubMedCentral Farooqi IS, Matarese G, Lord GM et al (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103CrossRefPubMedPubMedCentral
8.
go back to reference Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015) Treatment of obesity with celastrol. Cell 161:999–1011CrossRefPubMed Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015) Treatment of obesity with celastrol. Cell 161:999–1011CrossRefPubMed
9.
go back to reference de Git KC, Adan RA (2015) Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 16:207–224CrossRefPubMed de Git KC, Adan RA (2015) Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev 16:207–224CrossRefPubMed
10.
go back to reference Pedroso JA, Buonfiglio DC, Cardinali LI et al (2014) Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab 3:608–618CrossRefPubMedPubMedCentral Pedroso JA, Buonfiglio DC, Cardinali LI et al (2014) Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab 3:608–618CrossRefPubMedPubMedCentral
11.
go back to reference Picardi PK, Caricilli AM, de Abreu LL, Carvalheira JB, Velloso LA, Saad MJ (2010) Modulation of hypothalamic PTP1B in the TNF-α-induced insulin and leptin resistance. FEBS Lett 584:3179–3184CrossRefPubMed Picardi PK, Caricilli AM, de Abreu LL, Carvalheira JB, Velloso LA, Saad MJ (2010) Modulation of hypothalamic PTP1B in the TNF-α-induced insulin and leptin resistance. FEBS Lett 584:3179–3184CrossRefPubMed
12.
go back to reference Lantz KA, Hart SG, Planey SL et al (2010) Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity 18:1516–1523CrossRefPubMed Lantz KA, Hart SG, Planey SL et al (2010) Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity 18:1516–1523CrossRefPubMed
13.
14.
go back to reference Roth JD, Roland BL, Cole RL et al (2008) Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci U S A 105:7257–7262CrossRefPubMedPubMedCentral Roth JD, Roland BL, Cole RL et al (2008) Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci U S A 105:7257–7262CrossRefPubMedPubMedCentral
15.
go back to reference Müller TD, Sullivan LM, Habegger K et al (2012) Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 18:383–393CrossRefPubMed Müller TD, Sullivan LM, Habegger K et al (2012) Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 18:383–393CrossRefPubMed
16.
go back to reference Kim YW, Kim JY, Park YH et al (2006) Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 55:716–724CrossRefPubMed Kim YW, Kim JY, Park YH et al (2006) Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 55:716–724CrossRefPubMed
17.
go back to reference Yan C, Yang Y, Saito K et al (2015) Meta-chlorophenylpiperazine enhances leptin sensitivity in diet-induced obese mice. Br J Pharmacol 172:3510–3521CrossRefPubMed Yan C, Yang Y, Saito K et al (2015) Meta-chlorophenylpiperazine enhances leptin sensitivity in diet-induced obese mice. Br J Pharmacol 172:3510–3521CrossRefPubMed
18.
go back to reference Wang L, Barachina MD, Martinez V, Wei JY, Tache Y (2000) Synergistic interaction between CCK and leptin to regulate food intake. Regul Pept 92:79–85CrossRefPubMed Wang L, Barachina MD, Martinez V, Wei JY, Tache Y (2000) Synergistic interaction between CCK and leptin to regulate food intake. Regul Pept 92:79–85CrossRefPubMed
19.
go back to reference Unniappan S, Kieffer TJ (2008) Leptin extends the anorectic effects of chronic PYY(3-36) administration in ad libitum-fed rats. Am J Physiol Regul Integr Comp Physiol 295:R51–R58CrossRefPubMedPubMedCentral Unniappan S, Kieffer TJ (2008) Leptin extends the anorectic effects of chronic PYY(3-36) administration in ad libitum-fed rats. Am J Physiol Regul Integr Comp Physiol 295:R51–R58CrossRefPubMedPubMedCentral
20.
go back to reference Ravussin Y, Leibel RL, Ferrante AW Jr (2014) A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab 20:565–572CrossRefPubMedPubMedCentral Ravussin Y, Leibel RL, Ferrante AW Jr (2014) A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab 20:565–572CrossRefPubMedPubMedCentral
21.
go back to reference Ottaway N, Mahbod P, Rivero B et al (2015) Diet-induced obese mice retain endogenous leptin action. Cell Metab 21:877–882CrossRefPubMed Ottaway N, Mahbod P, Rivero B et al (2015) Diet-induced obese mice retain endogenous leptin action. Cell Metab 21:877–882CrossRefPubMed
22.
go back to reference Ozcan L, Ergin AS, Lu A et al (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9:35–51CrossRefPubMed Ozcan L, Ergin AS, Lu A et al (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9:35–51CrossRefPubMed
23.
go back to reference Cakir I, Cyr NE, Perello M et al (2013) Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J Biol Chem 288:17675–17688CrossRefPubMedPubMedCentral Cakir I, Cyr NE, Perello M et al (2013) Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. J Biol Chem 288:17675–17688CrossRefPubMedPubMedCentral
24.
go back to reference Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73CrossRefPubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73CrossRefPubMedPubMedCentral
25.
go back to reference Hosoi T, Baba S, Ozawa K (2014) Therapeutic potential of flurbiprofen against obesity in mice. Biochem Biophys Res Commun 449:132–134CrossRefPubMed Hosoi T, Baba S, Ozawa K (2014) Therapeutic potential of flurbiprofen against obesity in mice. Biochem Biophys Res Commun 449:132–134CrossRefPubMed
26.
go back to reference Hosoi T, Yamaguchi R, Noji K et al (2014) Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med 6:335–346PubMedPubMedCentral Hosoi T, Yamaguchi R, Noji K et al (2014) Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol Med 6:335–346PubMedPubMedCentral
27.
go back to reference Henstridge DC, Whitham M, Febbraio MA (2014) Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab 3:781–793CrossRefPubMedPubMedCentral Henstridge DC, Whitham M, Febbraio MA (2014) Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab 3:781–793CrossRefPubMedPubMedCentral
28.
go back to reference Kars M, Yang L, Gregor MF et al (2010) Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59:1899–1905CrossRefPubMedPubMedCentral Kars M, Yang L, Gregor MF et al (2010) Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59:1899–1905CrossRefPubMedPubMedCentral
30.
go back to reference Ma X, Xu L, Alberobello AT et al (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab 22:695–708CrossRefPubMed Ma X, Xu L, Alberobello AT et al (2015) Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab 22:695–708CrossRefPubMed
31.
go back to reference Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed
32.
go back to reference Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160CrossRefPubMed Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160CrossRefPubMed
34.
go back to reference Kleinridders A, Schenten D, Konner AC et al (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259CrossRefPubMedPubMedCentral Kleinridders A, Schenten D, Konner AC et al (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259CrossRefPubMedPubMedCentral
35.
go back to reference Milanski M, Degasperi G, Coope A et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370CrossRefPubMed Milanski M, Degasperi G, Coope A et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370CrossRefPubMed
36.
37.
go back to reference De Souza CT, Araujo EP, Bordin S et al (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199CrossRefPubMed De Souza CT, Araujo EP, Bordin S et al (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146:4192–4199CrossRefPubMed
38.
go back to reference Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241CrossRefPubMedPubMedCentral Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241CrossRefPubMedPubMedCentral
39.
go back to reference Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62:2629–2634CrossRefPubMedPubMedCentral Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62:2629–2634CrossRefPubMedPubMedCentral
40.
go back to reference Kim JG, Suyama S, Koch M et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910CrossRefPubMed Kim JG, Suyama S, Koch M et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910CrossRefPubMed
41.
go back to reference Yu Y, Wu Y, Szabo A et al (2013) Teasaponin reduces inflammation and central leptin resistance in diet-induced obese male mice. Endocrinology 154:3130–3140CrossRefPubMed Yu Y, Wu Y, Szabo A et al (2013) Teasaponin reduces inflammation and central leptin resistance in diet-induced obese male mice. Endocrinology 154:3130–3140CrossRefPubMed
42.
go back to reference Posey KA, Clegg DJ, Printz RL et al (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296:E1003–E1012CrossRefPubMedPubMedCentral Posey KA, Clegg DJ, Printz RL et al (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 296:E1003–E1012CrossRefPubMedPubMedCentral
43.
go back to reference Jang PG, Namkoong C, Kang GM et al (2010) NF-κB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia. J Biol Chem 285:9706–9715CrossRefPubMedPubMedCentral Jang PG, Namkoong C, Kang GM et al (2010) NF-κB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia. J Biol Chem 285:9706–9715CrossRefPubMedPubMedCentral
44.
go back to reference Oh IS, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW (2010) Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab 299:E47–E53CrossRef Oh IS, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW (2010) Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab 299:E47–E53CrossRef
45.
go back to reference Benzler J, Ganjam GK, Pretz D et al (2015) Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64:2015–2027CrossRefPubMed Benzler J, Ganjam GK, Pretz D et al (2015) Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64:2015–2027CrossRefPubMed
46.
go back to reference Kay JP, Alemzadeh R, Langley G, D’Angelo L, Smith P, Holshouser S (2001) Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metab Clin Exp 50:1457–1461CrossRefPubMed Kay JP, Alemzadeh R, Langley G, D’Angelo L, Smith P, Holshouser S (2001) Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metab Clin Exp 50:1457–1461CrossRefPubMed
47.
go back to reference Glueck CJ, Fontaine RN, Wang P et al (2001) Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metab Clin Exp 50:856–861CrossRefPubMed Glueck CJ, Fontaine RN, Wang P et al (2001) Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metab Clin Exp 50:856–861CrossRefPubMed
48.
go back to reference Fruehwald-Schultes B, Oltmanns KM, Toschek B et al (2002) Short-term treatment with metformin decreases serum leptin concentration without affecting body weight and body fat content in normal-weight healthy men. Metab Clin Exp 51:531–536CrossRefPubMed Fruehwald-Schultes B, Oltmanns KM, Toschek B et al (2002) Short-term treatment with metformin decreases serum leptin concentration without affecting body weight and body fat content in normal-weight healthy men. Metab Clin Exp 51:531–536CrossRefPubMed
49.
go back to reference Aubert G, Mansuy V, Voirol MJ, Pellerin L, Pralong FP (2011) The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metab Clin Exp 60:327–334CrossRefPubMed Aubert G, Mansuy V, Voirol MJ, Pellerin L, Pralong FP (2011) The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metab Clin Exp 60:327–334CrossRefPubMed
50.
go back to reference Mueller WM, Stanhope KL, Gregoire F, Evans JL, Havel PJ (2000) Effects of metformin and vanadium on leptin secretion from cultured rat adipocytes. Obes Res 8:530–539CrossRefPubMed Mueller WM, Stanhope KL, Gregoire F, Evans JL, Havel PJ (2000) Effects of metformin and vanadium on leptin secretion from cultured rat adipocytes. Obes Res 8:530–539CrossRefPubMed
51.
go back to reference Aronne L, Fujioka K, Aroda V et al (2007) Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab 92:2977–2983CrossRefPubMed Aronne L, Fujioka K, Aroda V et al (2007) Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab 92:2977–2983CrossRefPubMed
52.
go back to reference Ravussin E, Smith SR, Mitchell JA et al (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17:1736–1743CrossRefPubMedPubMedCentral Ravussin E, Smith SR, Mitchell JA et al (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17:1736–1743CrossRefPubMedPubMedCentral
53.
go back to reference Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR (2015) Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 308:E1116–E1122CrossRefPubMed Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR (2015) Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 308:E1116–E1122CrossRefPubMed
54.
go back to reference Turek VF, Trevaskis JL, Levin BE et al (2010) Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151:143–152CrossRefPubMed Turek VF, Trevaskis JL, Levin BE et al (2010) Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151:143–152CrossRefPubMed
56.
go back to reference Meehan CA, Cochran E, Kassai A, Brown RJ, Gorden P (2016) Metreleptin for injection to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy. Expert Rev Clin Pharmacol 9:59–68CrossRefPubMed Meehan CA, Cochran E, Kassai A, Brown RJ, Gorden P (2016) Metreleptin for injection to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy. Expert Rev Clin Pharmacol 9:59–68CrossRefPubMed
57.
go back to reference Rodriguez AJ, Mastronardi CA, Paz-Filho GJ (2015) New advances in the treatment of generalized lipodystrophy: role of metreleptin. Ther Clin Risk Manag 11:1391–1400PubMedPubMedCentral Rodriguez AJ, Mastronardi CA, Paz-Filho GJ (2015) New advances in the treatment of generalized lipodystrophy: role of metreleptin. Ther Clin Risk Manag 11:1391–1400PubMedPubMedCentral
58.
go back to reference Finan B, Clemmensen C, Muller TD (2015) Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Mol Cell Endocrinol 418P1:42–54CrossRef Finan B, Clemmensen C, Muller TD (2015) Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Mol Cell Endocrinol 418P1:42–54CrossRef
59.
go back to reference Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed
60.
go back to reference Clemmensen C, Chabenne J, Finan B et al (2014) GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63:1422–1427CrossRefPubMed Clemmensen C, Chabenne J, Finan B et al (2014) GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63:1422–1427CrossRefPubMed
61.
go back to reference Cegla J, Troke RC, Jones B et al (2014) Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63:3711–3720CrossRefPubMed Cegla J, Troke RC, Jones B et al (2014) Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63:3711–3720CrossRefPubMed
62.
go back to reference Tan TM, Field BC, McCullough KA et al (2013) Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138CrossRefPubMedPubMedCentral Tan TM, Field BC, McCullough KA et al (2013) Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138CrossRefPubMedPubMedCentral
64.
go back to reference Simonds SE, Cowley MA (2013) Hypertension in obesity: is leptin the culprit? Trends Neurosci 36:121–132CrossRefPubMed Simonds SE, Cowley MA (2013) Hypertension in obesity: is leptin the culprit? Trends Neurosci 36:121–132CrossRefPubMed
65.
go back to reference Chan JL, Koda J, Heilig JS et al (2015) Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy. Clin Endocrinol. doi:10.1111/cen.12980 Chan JL, Koda J, Heilig JS et al (2015) Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy. Clin Endocrinol. doi:10.​1111/​cen.​12980
Metadata
Title
Renaissance of leptin for obesity therapy
Authors
Carmelo Quarta
Miguel A. Sánchez-Garrido
Matthias H. Tschöp
Christoffer Clemmensen
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 5/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3906-7

Other articles of this Issue 5/2016

Diabetologia 5/2016 Go to the issue