Skip to main content
Top
Published in: Diabetologia 1/2016

01-01-2016 | Short Communication

The influence of type 1 diabetes on pancreatic weight

Authors: Martha L. Campbell-Thompson, John S. Kaddis, Clive Wasserfall, Michael J. Haller, Alberto Pugliese, Desmond A. Schatz, Jonathan J. Shuster, Mark A. Atkinson

Published in: Diabetologia | Issue 1/2016

Login to get access

Abstract

Aims/hypothesis

Previous studies of pancreases obtained at autopsy or by radiography note reduced pancreas weight (PW) and size, respectively, in type 1 diabetes; this finding is widely considered to be the result of chronic insulinopenia. This literature is, however, limited with respect to the influence of age, sex, anthropometric factors and disease duration on these observations. Moreover, data are sparse for young children, a group of particular interest for type 1 diabetes. We hypothesised that the pancreas-to-body weight ratio would normalise confounding inter-subject factors, thereby permitting better characterisation of PW in type 1 diabetes.

Methods

Transplant-grade pancreases were recovered from 216 organ donors with type 1 diabetes (n = 90), type 2 diabetes (n = 40) and no diabetes (n = 86). Whole-organ and head, body and tail weights were determined. The relative PW (RPW; PW [g] / body weight [kg]) was calculated and tested for normalisation of potential differences due to age, sex and BMI.

Results

PW significantly correlated with body weight in control donors (R 2 = 0.76, p < 0.001) while RPW (1.03 ± 0.36, mean ± SD) did not significantly differ across ages (0–58 years). Donors with type 1 diabetes (0.57 ± 0.18, p < 0.001), but not those with type 2 diabetes (0.93 ± 0.30), had significantly lower RPW. The relative weights of each pancreatic region from donors with type 1 diabetes were significantly smaller than those of regions from control donors and donors with type 2 diabetes (p < 0.001). Perhaps most interestingly, the RPW was not significantly associated with duration of type 1 diabetes or type 2 diabetes.

Conclusions/interpretation

RPW allows for comparisons across a wide range of donor ages by eliminating confounding variables. These data validate an interesting feature of the type 1 diabetes pancreas and underscore the need for additional studies to identify the mechanistic basis for this finding, including those beyond the chronic loss of endogenous insulin secretion.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS (2012) Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA 308:2337–2339CrossRefPubMed Campbell-Thompson M, Wasserfall C, Montgomery EL, Atkinson MA, Kaddis JS (2012) Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. JAMA 308:2337–2339CrossRefPubMed
3.
go back to reference Williams AJ, Thrower SL, Sequeiros IM et al (2012) Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab 97(11):E2109–E2113CrossRefPubMed Williams AJ, Thrower SL, Sequeiros IM et al (2012) Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab 97(11):E2109–E2113CrossRefPubMed
4.
go back to reference Gaglia JL, Guimaraes AR, Harisinghani M et al (2011) Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest 121:442–445PubMedCentralCrossRefPubMed Gaglia JL, Guimaraes AR, Harisinghani M et al (2011) Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest 121:442–445PubMedCentralCrossRefPubMed
5.
go back to reference Henderson JR, Daniel PM, Fraser PA (1981) The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut 22:158–167PubMedCentralCrossRefPubMed Henderson JR, Daniel PM, Fraser PA (1981) The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut 22:158–167PubMedCentralCrossRefPubMed
6.
go back to reference Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461CrossRefPubMed Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461CrossRefPubMed
7.
go back to reference Campbell-Thompson M, Wasserfall C, Kaddis J et al (2012) Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev 28:608–617PubMedCentralCrossRefPubMed Campbell-Thompson M, Wasserfall C, Kaddis J et al (2012) Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev 28:608–617PubMedCentralCrossRefPubMed
8.
go back to reference Keenan HA, Sun JK, Levine J et al (2010) Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59:2846–2853PubMedCentralCrossRefPubMed Keenan HA, Sun JK, Levine J et al (2010) Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59:2846–2853PubMedCentralCrossRefPubMed
9.
go back to reference Löhr M, Klöppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762CrossRefPubMed Löhr M, Klöppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762CrossRefPubMed
10.
go back to reference Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444CrossRefPubMed Rahier J, Wallon J, Loozen S, Lefevre A, Gepts W, Haot J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444CrossRefPubMed
Metadata
Title
The influence of type 1 diabetes on pancreatic weight
Authors
Martha L. Campbell-Thompson
John S. Kaddis
Clive Wasserfall
Michael J. Haller
Alberto Pugliese
Desmond A. Schatz
Jonathan J. Shuster
Mark A. Atkinson
Publication date
01-01-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 1/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3752-z

Other articles of this Issue 1/2016

Diabetologia 1/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.