Skip to main content
Top
Published in: Diabetologia 8/2015

01-08-2015 | Article

GIP increases adipose tissue expression and blood levels of MCP-1 in humans and links high energy diets to inflammation: a randomised trial

Published in: Diabetologia | Issue 8/2015

Login to get access

Abstract

Aims/hypothesis

Obesity is associated with elevated monocyte chemoattractant protein-1 (MCP-1), a proinflammatory chemokine related to diabetes and cardiovascular disease. Since obesity is triggered by energy dense diets, we hypothesised that nutrient induced intestinal hormones such as glucose-dependent insulinotropic peptide (GIP) may directly stimulate the release of chemokines from adipose tissue and induce low-grade inflammation.

Methods

GIP effects on gene expression and secretion of inflammatory markers were studied by microarray analysis and PCR from human subcutaneous fat biopsies of slightly obese but healthy volunteers in the metabolic ward of German Institute of Human Nutrition, Department of Clinical Nutrition, Potsdam-Rehbrücke. To allocate the participants to the study arms they were numbered in order of their recruitment and then assigned to the groups by a random number generator. In a randomised, single-blind (participants) crossover design, the participants received GIP infusions in postprandial concentrations (2 pmol kg−1 min−1) or saline (154 mmol/l NaCl) infusions for 240 min either alone, in combination with hyperinsulinaemic–euglycaemic (EU) or hyperinsulinaemic–hyperglycaemic (HC) clamps. Possible mechanisms of GIP effects were investigated in single and co-cultures of macrophage and adipocyte cell lines and in primary human monocytes, macrophages and adipocytes.

Results

A total of 17 participants were randomised to the following groups: EU with GIP infusion (n = 9); EU with NaCl infusion (n = 9); HC with GIP infusion (n = 8); HC with NaCl infusion (n = 8); sole GIP infusion (n = 11) and sole placebo infusion (n = 11). All 17 individuals were analysed. The study is completed. In human subcutaneous adipose tissue (hSCAT), infusions of GIP significantly increased inflammatory chemokine and cytokine gene networks in transcriptomic microarray analyses. Particularly MCP-1 (180 ± 26%), MCP-2 (246 ± 58%) and IL-6 (234 ± 40%) mRNA levels in adipose tissue as well as circulating plasma concentrations of MCP-1 (165 ± 12 vs 135 ± 13 pg/ml; GIP vs saline after 240 min; p < 0.05 for all variables) in humans increased independently of circulating insulin or glucose plasma concentrations. GIP stimulation increased Mcp-1 mRNA-expression in co-cultures of differentiated 3T3L1-adipocytes and RAW 264.7 macrophages but not in the isolated cell lines. Similarly, GIP increased MCP-1 transcripts in co-cultures of primary human macrophages with human adipocytes. GIP receptor (GIPR) transcripts were present in primary monocytes and the different cell lines and induced activation of extracellular related kinase (ERK) as well as increases in cAMP, indicating functional receptors.

Conclusions/interpretation

Our findings suggest that the nutrient induced gut hormone GIP may initiate adipose tissue inflammation by triggering a crosstalk of adipocytes and macrophages involving MCP-1.
Trial registration: ClinicalTrials.gov NCT00774488
Funding: This work was supported by the German Research Foundation (DFG): grant No. Pf164/021002
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedCentralPubMedCrossRef Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedCentralPubMedCrossRef
2.
go back to reference Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedCentralPubMedCrossRef Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedCentralPubMedCrossRef
3.
go back to reference Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 94:1543–1549PubMedCentralPubMedCrossRef Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 94:1543–1549PubMedCentralPubMedCrossRef
4.
go back to reference Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614PubMedCrossRef Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614PubMedCrossRef
6.
go back to reference Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068PubMedCrossRef Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068PubMedCrossRef
7.
go back to reference Odegaard JI, Ricardo-Gonzalez RR, Goforth MH et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120PubMedCentralPubMedCrossRef Odegaard JI, Ricardo-Gonzalez RR, Goforth MH et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120PubMedCentralPubMedCrossRef
8.
go back to reference Arkan MC, Hevener AL, Greten FR et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198PubMedCrossRef Arkan MC, Hevener AL, Greten FR et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198PubMedCrossRef
9.
go back to reference Kamei N, Tobe K, Suzuki R et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614PubMedCrossRef Kamei N, Tobe K, Suzuki R et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614PubMedCrossRef
10.
go back to reference Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505PubMedCentralPubMedCrossRef Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505PubMedCentralPubMedCrossRef
11.
12.
go back to reference Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V (1993) Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 138:159–166PubMedCrossRef Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V (1993) Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 138:159–166PubMedCrossRef
13.
go back to reference Jones IR, Owens DR, Luzio SD, Hayes TM (1989) Obesity is associated with increased post-prandial GIP levels which are not reduced by dietary restriction and weight loss. Diabete Metab 15:11–22PubMed Jones IR, Owens DR, Luzio SD, Hayes TM (1989) Obesity is associated with increased post-prandial GIP levels which are not reduced by dietary restriction and weight loss. Diabete Metab 15:11–22PubMed
14.
15.
go back to reference Holst JJ, Vilsbøll T, Deacon CF (2008) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136 Holst JJ, Vilsbøll T, Deacon CF (2008) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136
16.
go back to reference Miyawaki K, Yamada Y, Ban N et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742PubMedCrossRef Miyawaki K, Yamada Y, Ban N et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742PubMedCrossRef
17.
go back to reference Flatt PR (2008) Dorothy Hodgkin Lecture 2008. Gastric inhibitory polypeptide (GIP) revisited: a new therapeutic target for obesity-diabetes? Diabet Med 25:759–764PubMedCrossRef Flatt PR (2008) Dorothy Hodgkin Lecture 2008. Gastric inhibitory polypeptide (GIP) revisited: a new therapeutic target for obesity-diabetes? Diabet Med 25:759–764PubMedCrossRef
18.
go back to reference Hansotia T, Maida A, Flock G et al (2007) Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest 117:143–152PubMedCentralPubMedCrossRef Hansotia T, Maida A, Flock G et al (2007) Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest 117:143–152PubMedCentralPubMedCrossRef
19.
go back to reference Mazzaferri EL, Starich GH, Lardinois CK, Bowen GD (1985) Gastric inhibitory polypeptide responses to nutrients in Caucasians and American Indians with obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 61:313–321PubMedCrossRef Mazzaferri EL, Starich GH, Lardinois CK, Bowen GD (1985) Gastric inhibitory polypeptide responses to nutrients in Caucasians and American Indians with obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 61:313–321PubMedCrossRef
20.
go back to reference Hauner H, Glatting G, Kaminska D, Pfeiffer EF (1988) Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes. Ann Nutr Metab 32:282–288PubMedCrossRef Hauner H, Glatting G, Kaminska D, Pfeiffer EF (1988) Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes. Ann Nutr Metab 32:282–288PubMedCrossRef
21.
go back to reference Kim SJ, Nian C, McIntosh CH (2007) Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem 282:8557–8567PubMedCrossRef Kim SJ, Nian C, McIntosh CH (2007) Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem 282:8557–8567PubMedCrossRef
22.
go back to reference Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM (2007) Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 133:1796–1805PubMedCentralPubMedCrossRef Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM (2007) Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 133:1796–1805PubMedCentralPubMedCrossRef
23.
go back to reference Vilsbøll T, Holst JJ (2004) Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47:357–366PubMedCrossRef Vilsbøll T, Holst JJ (2004) Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47:357–366PubMedCrossRef
24.
go back to reference Rudovich N, Kaiser S, Engeli S et al (2007) GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regul Pept 142:138–145PubMedCrossRef Rudovich N, Kaiser S, Engeli S et al (2007) GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. Regul Pept 142:138–145PubMedCrossRef
25.
go back to reference Timper K, Grisouard J, Sauter NS et al (2013) Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 304:E1–E13PubMedCrossRef Timper K, Grisouard J, Sauter NS et al (2013) Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. Am J Physiol Endocrinol Metab 304:E1–E13PubMedCrossRef
26.
go back to reference Breitling R, Amtmann A, Herzyk P (2004) Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinforma 5:34CrossRef Breitling R, Amtmann A, Herzyk P (2004) Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinforma 5:34CrossRef
27.
go back to reference Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17PubMed Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17PubMed
28.
go back to reference Pivovarova O, Hornemann S, Weimer S et al (2015) Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides 65C:12–19CrossRef Pivovarova O, Hornemann S, Weimer S et al (2015) Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides 65C:12–19CrossRef
29.
go back to reference Ehses JA, Pelech SL, Pederson RA, McIntosh CH (2002) Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 277:37088–37097PubMedCrossRef Ehses JA, Pelech SL, Pederson RA, McIntosh CH (2002) Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 277:37088–37097PubMedCrossRef
30.
go back to reference Fernandez-Real JM, Pickup JC (2008) Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 19:10–16PubMedCrossRef Fernandez-Real JM, Pickup JC (2008) Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 19:10–16PubMedCrossRef
33.
go back to reference McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR (2007) GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 293:E1746–E1755PubMedCrossRef McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR (2007) GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 293:E1746–E1755PubMedCrossRef
34.
go back to reference Jiao P, Chen Q, Shah S et al (2009) Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes 58:104–115PubMedCentralPubMedCrossRef Jiao P, Chen Q, Shah S et al (2009) Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes 58:104–115PubMedCentralPubMedCrossRef
35.
go back to reference Gault VA, Irwin N, Green BD et al (2005) Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54:2436–2446PubMedCrossRef Gault VA, Irwin N, Green BD et al (2005) Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54:2436–2446PubMedCrossRef
36.
go back to reference Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ (2007) Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3:597–601PubMedCentralPubMedCrossRef Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ (2007) Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3:597–601PubMedCentralPubMedCrossRef
37.
go back to reference Mingrone G, Nolfe G, Gissey GC et al (2009) Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia 52:873–881PubMedCrossRef Mingrone G, Nolfe G, Gissey GC et al (2009) Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia 52:873–881PubMedCrossRef
Metadata
Title
GIP increases adipose tissue expression and blood levels of MCP-1 in humans and links high energy diets to inflammation: a randomised trial
Publication date
01-08-2015
Published in
Diabetologia / Issue 8/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3618-4

Other articles of this Issue 8/2015

Diabetologia 8/2015 Go to the issue