Skip to main content
Top
Published in: Diabetologia 7/2015

Open Access 01-07-2015 | Meta-analysis

Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies

Author: The InterAct Consortium

Published in: Diabetologia | Issue 7/2015

Login to get access

Abstract

Aims/hypothesis

Intake of dietary fibre has been associated with a reduced risk of type 2 diabetes, but few European studies have been published on this. We evaluated the association between intake of dietary fibre and type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study and in a meta-analysis of prospective studies.

Methods

During 10.8 years of follow-up, 11,559 participants with type 2 diabetes were identified and a subcohort of 15,258 participants was selected for the case-cohort study. Country-specific HRs were estimated using Prentice-weighted Cox proportional hazards models and were pooled using a random effects meta-analysis. Eighteen other cohort studies were identified for the meta-analysis.

Results

In the EPIC-InterAct Study, dietary fibre intake was associated with a lower risk of diabetes (HRQ4 vs Q1 0.82; 95% CI 0.69, 0.97) after adjustment for lifestyle and dietary factors. Similar inverse associations were observed for the intake of cereal fibre and vegetable fibre, but not fruit fibre. The associations were attenuated and no longer statistically significant after adjustment for BMI. In the meta-analysis (19 cohorts), the summary RRs per 10 g/day increase in intake were 0.91 (95% CI 0.87, 0.96) for total fibre, 0.75 (95% CI 0.65, 0.86) for cereal fibre, 0.95 (95% CI 0.87, 1.03) for fruit fibre and 0.93 (95% CI 0.82, 1.05) for vegetable fibre.

Conclusions/interpretation

The overall evidence indicates that the intake of total and cereal fibre is inversely related to the risk of type 2 diabetes. The results of the EPIC-InterAct Study suggest that the association may be partially explained by body weight.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321PubMedCrossRef Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321PubMedCrossRef
2.
go back to reference Seshasai SR, Kaptoge S, Thompson A et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841PubMedCrossRef Seshasai SR, Kaptoge S, Thompson A et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841PubMedCrossRef
3.
go back to reference Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM (2012) Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care 35:1835–1844PubMedCentralPubMedCrossRef Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM (2012) Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care 35:1835–1844PubMedCentralPubMedCrossRef
4.
go back to reference Anonymous (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36:1033–1046CrossRef Anonymous (2013) Economic costs of diabetes in the U.S. in 2012. Diabetes Care 36:1033–1046CrossRef
5.
go back to reference Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167:956–965PubMedCrossRef Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167:956–965PubMedCrossRef
6.
go back to reference Montonen J, Knekt P, Jarvinen R, Aromaa A, Reunanen A (2003) Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 77:622–629PubMed Montonen J, Knekt P, Jarvinen R, Aromaa A, Reunanen A (2003) Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 77:622–629PubMed
7.
go back to reference Lindström J, Peltonen M, Eriksson JG et al (2006) High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia 49:912–920 Lindström J, Peltonen M, Eriksson JG et al (2006) High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia 49:912–920
8.
go back to reference Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC (1997) Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277:472–477PubMedCrossRef Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC (1997) Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 277:472–477PubMedCrossRef
9.
go back to reference Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB (2004) Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80:348–356PubMed Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB (2004) Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 80:348–356PubMed
10.
go back to reference Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71:921–930PubMed Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71:921–930PubMed
11.
go back to reference Kumar V, Sinha AK, Makkar HP, de Boeck G, Becker K (2012) Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr 52:899–935PubMedCrossRef Kumar V, Sinha AK, Makkar HP, de Boeck G, Becker K (2012) Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr 52:899–935PubMedCrossRef
12.
go back to reference Riboli E, Hunt KJ, Slimani N et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124PubMedCrossRef Riboli E, Hunt KJ, Slimani N et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5:1113–1124PubMedCrossRef
13.
go back to reference Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S6–S14PubMedCrossRef Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S6–S14PubMedCrossRef
14.
go back to reference Langenberg C, Sharp S, Forouhi NG et al (2011) Design and cohort description of the InterAct project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. Diabetologia 54:2272–2282PubMedCentralPubMedCrossRef Langenberg C, Sharp S, Forouhi NG et al (2011) Design and cohort description of the InterAct project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. Diabetologia 54:2272–2282PubMedCentralPubMedCrossRef
15.
go back to reference Kroke A, Klipstein-Grobusch K, Voss S et al (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70:439–447PubMed Kroke A, Klipstein-Grobusch K, Voss S et al (1999) Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70:439–447PubMed
16.
go back to reference Margetts BM, Pietinen P (1997) European Prospective Investigation into Cancer and Nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5PubMedCrossRef Margetts BM, Pietinen P (1997) European Prospective Investigation into Cancer and Nutrition: validity studies on dietary assessment methods. Int J Epidemiol 26(Suppl 1):S1–S5PubMedCrossRef
17.
go back to reference Slimani N, Deharveng G, Unwin I et al (2007) The EPIC Nutrient Database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61:1037–1056PubMedCrossRef Slimani N, Deharveng G, Unwin I et al (2007) The EPIC Nutrient Database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61:1037–1056PubMedCrossRef
18.
go back to reference Cust AE, Skilton MR, van Bakel MM et al (2009) Total dietary carbohydrate, sugar, starch and fibre intakes in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 63(Suppl 4):S37–S60PubMedCrossRef Cust AE, Skilton MR, van Bakel MM et al (2009) Total dietary carbohydrate, sugar, starch and fibre intakes in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 63(Suppl 4):S37–S60PubMedCrossRef
19.
go back to reference DeVries JW, Rader JI (2005) Historical perspective as a guide for identifying and developing applicable methods for dietary fiber. J AOAC Int 88:1349–1366PubMed DeVries JW, Rader JI (2005) Historical perspective as a guide for identifying and developing applicable methods for dietary fiber. J AOAC Int 88:1349–1366PubMed
20.
go back to reference Wareham NJ, Jakes RW, Rennie KL et al (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6:407–413PubMedCrossRef Wareham NJ, Jakes RW, Rennie KL et al (2003) Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 6:407–413PubMedCrossRef
21.
go back to reference The InterAct Consortium (2012) Physical activity reduces the risk of incident type 2 diabetes in general and in abdominally lean and obese men and women: the EPIC-InterAct Study. Diabetologia 55:1944–1952PubMedCentralCrossRef The InterAct Consortium (2012) Physical activity reduces the risk of incident type 2 diabetes in general and in abdominally lean and obese men and women: the EPIC-InterAct Study. Diabetologia 55:1944–1952PubMedCentralCrossRef
22.
go back to reference Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SPubMed Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228SPubMed
23.
go back to reference Onland-Moret NC, van der A DL, van der Schouw YT et al (2007) Analysis of case-cohort data: a comparison of different methods. J Clin Epidemiol 60:350–355 Onland-Moret NC, van der A DL, van der Schouw YT et al (2007) Analysis of case-cohort data: a comparison of different methods. J Clin Epidemiol 60:350–355
24.
25.
go back to reference Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRef Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRef
26.
go back to reference Salmeron J, Ascherio A, Rimm EB et al (1997) Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20:545–550PubMedCrossRef Salmeron J, Ascherio A, Rimm EB et al (1997) Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20:545–550PubMedCrossRef
27.
go back to reference Hu FB, Manson JE, Stampfer MJ et al (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797PubMedCrossRef Hu FB, Manson JE, Stampfer MJ et al (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797PubMedCrossRef
28.
go back to reference Stevens J, Ahn K, Juhaeri, Houston D, Steffan L, Couper D (2002) Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults: the ARIC study. Diabetes Care 25:1715–1721PubMedCrossRef Stevens J, Ahn K, Juhaeri, Houston D, Steffan L, Couper D (2002) Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults: the ARIC study. Diabetes Care 25:1715–1721PubMedCrossRef
29.
go back to reference Hodge AM, English DR, O'Dea K, Giles GG (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27:2701–2706PubMedCrossRef Hodge AM, English DR, O'Dea K, Giles GG (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27:2701–2706PubMedCrossRef
30.
go back to reference Barclay AW, Flood VM, Rochtchina E, Mitchell P, Brand-Miller JC (2007) Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care 30:2811–2813PubMedCrossRef Barclay AW, Flood VM, Rochtchina E, Mitchell P, Brand-Miller JC (2007) Glycemic index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care 30:2811–2813PubMedCrossRef
31.
go back to reference Krishnan S, Rosenberg L, Singer M et al (2007) Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Intern Med 167:2304–2309PubMedCrossRef Krishnan S, Rosenberg L, Singer M et al (2007) Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Intern Med 167:2304–2309PubMedCrossRef
32.
go back to reference Wannamethee SG, Whincup PH, Thomas MC, Sattar N (2009) Associations between dietary fiber and inflammation, hepatic function, and risk of type 2 diabetes in older men: potential mechanisms for the benefits of fiber on diabetes risk. Diabetes Care 32:1823–1825PubMedCentralPubMedCrossRef Wannamethee SG, Whincup PH, Thomas MC, Sattar N (2009) Associations between dietary fiber and inflammation, hepatic function, and risk of type 2 diabetes in older men: potential mechanisms for the benefits of fiber on diabetes risk. Diabetes Care 32:1823–1825PubMedCentralPubMedCrossRef
33.
go back to reference Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G (2010) Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr 140:68–74PubMedCentralPubMedCrossRef Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G (2010) Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr 140:68–74PubMedCentralPubMedCrossRef
34.
go back to reference Sakurai M, Nakamura K, Miura K et al (2012) Dietary glycemic index and risk of type 2 diabetes mellitus in middle-aged Japanese men. Metabolism 61:47–55PubMedCrossRef Sakurai M, Nakamura K, Miura K et al (2012) Dietary glycemic index and risk of type 2 diabetes mellitus in middle-aged Japanese men. Metabolism 61:47–55PubMedCrossRef
35.
go back to reference Wirström T, Hilding A, Gu HF, Ostenson CG, Bjorklund A (2013) Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr 97:179–187PubMedCrossRef Wirström T, Hilding A, Gu HF, Ostenson CG, Bjorklund A (2013) Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr 97:179–187PubMedCrossRef
36.
go back to reference Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH (2012) Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med Assoc 111:651–659PubMedCrossRef Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH (2012) Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med Assoc 111:651–659PubMedCrossRef
37.
go back to reference Liu JC, Guo ZR, Hu XS, Zhou ZY, Wu M, Luo WS (2012) Impact of lifestyle and obesity to the risk of type 2 diabetes: a prospective study in Jiangsu province. Zhonghua Yu Fang Yi Xue Za Zhi 46:311–315PubMed Liu JC, Guo ZR, Hu XS, Zhou ZY, Wu M, Luo WS (2012) Impact of lifestyle and obesity to the risk of type 2 diabetes: a prospective study in Jiangsu province. Zhonghua Yu Fang Yi Xue Za Zhi 46:311–315PubMed
38.
go back to reference Qiao Y, Tinker L, Olendzki BC et al (2014) Racial/ethnic disparities in association between dietary quality and incident diabetes in postmenopausal women in the United States: the Women’s Health Initiative 1993–2005. Ethn Health 19:328–347 Qiao Y, Tinker L, Olendzki BC et al (2014) Racial/ethnic disparities in association between dietary quality and incident diabetes in postmenopausal women in the United States: the Women’s Health Initiative 1993–2005. Ethn Health 19:328–347
39.
go back to reference Hodge AM, Dowse GK, Zimmet PZ (1993) Diet does not predict incidence or prevalence of non-insulin-dependent diabetes in Nauruans. Asia Pac J Clin Nutr 2:35–41PubMed Hodge AM, Dowse GK, Zimmet PZ (1993) Diet does not predict incidence or prevalence of non-insulin-dependent diabetes in Nauruans. Asia Pac J Clin Nutr 2:35–41PubMed
40.
go back to reference Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309 Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309
41.
go back to reference Royston P (2000) A strategy for modelling the effect of a continuous covariate in medicine and epidemiology. Stat Med 19:1831–1847PubMedCrossRef Royston P (2000) A strategy for modelling the effect of a continuous covariate in medicine and epidemiology. Stat Med 19:1831–1847PubMedCrossRef
43.
go back to reference Yao B, Fang H, Xu W et al (2014) Dietary fiber intake and risk of type 2 diabetes: a dose–response analysis of prospective studies. Eur J Epidemiol 29:79–88 Yao B, Fang H, Xu W et al (2014) Dietary fiber intake and risk of type 2 diabetes: a dose–response analysis of prospective studies. Eur J Epidemiol 29:79–88
44.
go back to reference Aune D, Norat T, Romundstad P, Vatten LJ (2013) Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies. Eur J Epidemiol 28:845–858 Aune D, Norat T, Romundstad P, Vatten LJ (2013) Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies. Eur J Epidemiol 28:845–858
45.
go back to reference Cooper AJ, Forouhi NG, Ye Z et al (2012) Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 66:1082–1092PubMedCentralPubMedCrossRef Cooper AJ, Forouhi NG, Ye Z et al (2012) Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 66:1082–1092PubMedCentralPubMedCrossRef
46.
go back to reference Bakker SJ, Hoogeveen EK, Nijpels G et al (1998) The association of dietary fibres with glucose tolerance is partly explained by concomitant intake of thiamine: the Hoorn Study. Diabetologia 41:1168–1175PubMedCrossRef Bakker SJ, Hoogeveen EK, Nijpels G et al (1998) The association of dietary fibres with glucose tolerance is partly explained by concomitant intake of thiamine: the Hoorn Study. Diabetologia 41:1168–1175PubMedCrossRef
47.
go back to reference Dong JY, Zhang L, Zhang YH, Qin LQ (2011) Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Br J Nutr 106:1649–1654PubMedCrossRef Dong JY, Zhang L, Zhang YH, Qin LQ (2011) Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Br J Nutr 106:1649–1654PubMedCrossRef
48.
go back to reference Sluijs I, Beulens JW, van der Schouw YT et al (2013) Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries. J Nutr 143:93–99PubMedCrossRef Sluijs I, Beulens JW, van der Schouw YT et al (2013) Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries. J Nutr 143:93–99PubMedCrossRef
49.
go back to reference Du H, van der A DL, Boshuizen HC et al (2010) Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91:329–336 Du H, van der A DL, Boshuizen HC et al (2010) Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91:329–336
50.
go back to reference Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M (2012) Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res doi:10.3402/fnr.v56i0.19103 Fogelholm M, Anderssen S, Gunnarsdottir I, Lahti-Koski M (2012) Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res doi:10.​3402/​fnr.​v56i0.​19103
51.
go back to reference Wanders AJ, van den Borne JJ, de Graaf C (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12:724–739PubMed Wanders AJ, van den Borne JJ, de Graaf C (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12:724–739PubMed
52.
go back to reference Koh-Banerjee P, Franz M, Sampson L et al (2004) Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr 80:1237–1245PubMed Koh-Banerjee P, Franz M, Sampson L et al (2004) Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr 80:1237–1245PubMed
53.
go back to reference Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G (2003) Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 78:920–927PubMed Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G (2003) Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 78:920–927PubMed
54.
go back to reference Davis JN, Alexander KE, Ventura EE, Toledo-Corral CM, Goran MI (2009) Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr 90:1160–1166PubMedCentralPubMedCrossRef Davis JN, Alexander KE, Ventura EE, Toledo-Corral CM, Goran MI (2009) Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr 90:1160–1166PubMedCentralPubMedCrossRef
55.
go back to reference Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98:594–619PubMedCrossRef Cho SS, Qi L, Fahey GC Jr, Klurfeld DM (2013) Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 98:594–619PubMedCrossRef
56.
go back to reference Anderson JW, Baird P, Davis RH Jr et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205PubMedCrossRef Anderson JW, Baird P, Davis RH Jr et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205PubMedCrossRef
57.
go back to reference Weickert MO, Roden M, Isken F et al (2011) Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 94:459–471PubMedCrossRef Weickert MO, Roden M, Isken F et al (2011) Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 94:459–471PubMedCrossRef
58.
go back to reference Weickert MO, Pfeiffer AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138:439–442PubMed Weickert MO, Pfeiffer AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138:439–442PubMed
59.
go back to reference Donin AS, Nightingale CM, Owen CG et al (2014) Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the Child Heart and Health Study in England (CHASE): a cross-sectional analysis. PLoS Med 11, e1001703PubMedCentralPubMedCrossRef Donin AS, Nightingale CM, Owen CG et al (2014) Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the Child Heart and Health Study in England (CHASE): a cross-sectional analysis. PLoS Med 11, e1001703PubMedCentralPubMedCrossRef
60.
go back to reference Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145PubMedCrossRef Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145PubMedCrossRef
61.
go back to reference Diamant M, Blaak EE, de Vos WM (2011) Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281 Diamant M, Blaak EE, de Vos WM (2011) Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281
62.
63.
go back to reference Holt S, Heading RC, Carter DC, Prescott LF, Tothill P (1979) Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet 1:636–639PubMedCrossRef Holt S, Heading RC, Carter DC, Prescott LF, Tothill P (1979) Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet 1:636–639PubMedCrossRef
64.
go back to reference Tighe P, Duthie G, Vaughan N et al (2010) Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 92:733–740PubMedCrossRef Tighe P, Duthie G, Vaughan N et al (2010) Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 92:733–740PubMedCrossRef
65.
go back to reference Brownlee IA, Moore C, Chatfield M et al (2010) Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr 104:125–134PubMedCentralPubMedCrossRef Brownlee IA, Moore C, Chatfield M et al (2010) Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr 104:125–134PubMedCentralPubMedCrossRef
66.
go back to reference Qi L, van Dam RM, Liu S, Franz M, Mantzoros C, Hu FB (2006) Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29:207–211PubMedCrossRef Qi L, van Dam RM, Liu S, Franz M, Mantzoros C, Hu FB (2006) Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29:207–211PubMedCrossRef
67.
go back to reference Montonen J, Boeing H, Fritsche A et al (2013) Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr 52:337–345PubMedCentralPubMedCrossRef Montonen J, Boeing H, Fritsche A et al (2013) Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr 52:337–345PubMedCentralPubMedCrossRef
68.
go back to reference Ma Y, Griffith JA, Chasan-Taber L et al (2006) Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr 83:760–766PubMedCentralPubMed Ma Y, Griffith JA, Chasan-Taber L et al (2006) Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr 83:760–766PubMedCentralPubMed
69.
go back to reference Ma Y, Hebert JR, Li W et al (2008) Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition 24:941–949PubMedCentralPubMedCrossRef Ma Y, Hebert JR, Li W et al (2008) Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition 24:941–949PubMedCentralPubMedCrossRef
70.
go back to reference Sun SZ, Flickinger BD, Williamson-Hughes PS, Empie MW (2010) Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr Metab (Lond) 7:16CrossRef Sun SZ, Flickinger BD, Williamson-Hughes PS, Empie MW (2010) Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr Metab (Lond) 7:16CrossRef
71.
go back to reference Lee DH, Steffen LM, Jacobs DR Jr (2004) Association between serum gamma-glutamyltransferase and dietary factors: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 79:600–605PubMed Lee DH, Steffen LM, Jacobs DR Jr (2004) Association between serum gamma-glutamyltransferase and dietary factors: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 79:600–605PubMed
72.
go back to reference Hu FB, Meigs JB, Li TY, Rifai N, Manson JE (2004) Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 53:693–700PubMedCrossRef Hu FB, Meigs JB, Li TY, Rifai N, Manson JE (2004) Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes 53:693–700PubMedCrossRef
73.
go back to reference Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Schulze MB, van der Schouw YT (2013) Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J Nutr 143:80–85 Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Schulze MB, van der Schouw YT (2013) Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J Nutr 143:80–85
74.
go back to reference Fraser A, Harris R, Sattar N, Ebrahim S, Davey SG, Lawlor DA (2009) Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care 32:741–750PubMedCentralPubMedCrossRef Fraser A, Harris R, Sattar N, Ebrahim S, Davey SG, Lawlor DA (2009) Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care 32:741–750PubMedCentralPubMedCrossRef
75.
go back to reference Qi L, Rimm E, Liu S, Rifai N, Hu FB (2005) Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care 28:1022–1028PubMedCrossRef Qi L, Rimm E, Liu S, Rifai N, Hu FB (2005) Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care 28:1022–1028PubMedCrossRef
76.
go back to reference Qi L, Meigs JB, Liu S, Manson JE, Mantzoros C, Hu FB (2006) Dietary fibers and glycemic load, obesity, and plasma adiponectin levels in women with type 2 diabetes. Diabetes Care 29:1501–1505PubMedCrossRef Qi L, Meigs JB, Liu S, Manson JE, Mantzoros C, Hu FB (2006) Dietary fibers and glycemic load, obesity, and plasma adiponectin levels in women with type 2 diabetes. Diabetes Care 29:1501–1505PubMedCrossRef
77.
go back to reference Cassidy A, Skidmore P, Rimm EB et al (2009) Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr 139:353–358PubMedCrossRef Cassidy A, Skidmore P, Rimm EB et al (2009) Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr 139:353–358PubMedCrossRef
78.
go back to reference Li S, Shin HJ, Ding EL, van Dam RM (2009) Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302:179–188PubMedCrossRef Li S, Shin HJ, Ding EL, van Dam RM (2009) Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302:179–188PubMedCrossRef
Metadata
Title
Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies
Author
The InterAct Consortium
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3585-9

Other articles of this Issue 7/2015

Diabetologia 7/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.