Skip to main content
Top
Published in: Diabetologia 6/2014

01-06-2014 | Article

Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice

Authors: Eric Plante, Ahmed Menaouar, Bogdan A. Danalache, Tom L. Broderick, Marek Jankowski, Jolanta Gutkowska

Published in: Diabetologia | Issue 6/2014

Login to get access

Abstract

Aims/hypothesis

Obesity and diabetes increase the risk of developing cardiovascular diseases and heart failure. These metabolic disorders are generally reflected by natriuretic peptide system deficiency. Since brain natriuretic peptide (BNP) is known to influence metabolism and cardioprotection, we investigated the effect of chronic exogenous BNP treatment on adverse myocardial consequences related to obesity and diabetes.

Methods

Ten-week-old C57BL/KsJ-db/db obese diabetic mice (db/db) and their lean control littermates (db/+) were treated with BNP (0.6 μg kg−1 h−1) or saline for 12 weeks (n = 10/group). Serial blood and tomography analysis were performed. Cardiac function was determined by echocardiography, and biochemical and histological heart and fat analyses were also performed.

Results

BNP treatment resulted in an average increase in plasma BNP levels of 70 pg/ml. An improvement in the metabolic profile of db/db mice was observed, including a reduction in fat content, increased insulin sensitivity, improved glucose tolerance and lower blood glucose, despite increased food intake. db/db mice receiving saline displayed both early systolic and diastolic dysfunction, whereas these functional changes were prevented by BNP treatment. The cardioprotective effects of BNP were attributed to the inhibition of cardiomyocyte apoptosis, myocardial fibrosis, cardiac hypertrophy and the AGE–receptor for AGE (RAGE) system as well as normalisation of cardiac AMP-activated protein kinase and endothelial nitric oxide synthase activities.

Conclusions/interpretation

Our results indicate that chronic BNP treatment at low dose improves the metabolic profile and prevents the development of myocardial dysfunction in db/db mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheng S, Fox CS, Larson MG et al (2011) Relation of visceral adiposity to circulating natriuretic peptides in ambulatory individuals. Am J Cardiol 108:979–984PubMedCentralPubMedCrossRef Cheng S, Fox CS, Larson MG et al (2011) Relation of visceral adiposity to circulating natriuretic peptides in ambulatory individuals. Am J Cardiol 108:979–984PubMedCentralPubMedCrossRef
2.
go back to reference Wang TJ, Larson MG, Keyes MJ, Levy D, Benjamin EJ, Vasan RS (2007) Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation 115:1345–1353PubMedCrossRef Wang TJ, Larson MG, Keyes MJ, Levy D, Benjamin EJ, Vasan RS (2007) Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation 115:1345–1353PubMedCrossRef
3.
go back to reference Wang TJ, Larson MG, Levy D et al (2004) Impact of obesity on plasma natriuretic peptide levels. Circulation 109:594–600PubMedCrossRef Wang TJ, Larson MG, Levy D et al (2004) Impact of obesity on plasma natriuretic peptide levels. Circulation 109:594–600PubMedCrossRef
4.
go back to reference Khan AM, Cheng S, Magnusson M et al (2011) Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J Clin Endocrinol Metab 96:3242–3249PubMedCentralPubMedCrossRef Khan AM, Cheng S, Magnusson M et al (2011) Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J Clin Endocrinol Metab 96:3242–3249PubMedCentralPubMedCrossRef
5.
go back to reference Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB (2010) Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 151:5218–5225PubMedCrossRef Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB (2010) Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 151:5218–5225PubMedCrossRef
6.
go back to reference Gutkowska J, Broderick TL, Bogdan D, Wang D, Lavoie JM, Jankowski M (2009) Downregulation of oxytocin and natriuretic peptides in diabetes: possible implications in cardiomyopathy. J Physiol 587:4725–4736PubMedCentralPubMedCrossRef Gutkowska J, Broderick TL, Bogdan D, Wang D, Lavoie JM, Jankowski M (2009) Downregulation of oxytocin and natriuretic peptides in diabetes: possible implications in cardiomyopathy. J Physiol 587:4725–4736PubMedCentralPubMedCrossRef
7.
8.
go back to reference Oliver PM, Fox JE, Kim R et al (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94:14730–14735PubMedCentralPubMedCrossRef Oliver PM, Fox JE, Kim R et al (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94:14730–14735PubMedCentralPubMedCrossRef
9.
go back to reference Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Investig 101:812–818PubMedCentralPubMedCrossRef Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Investig 101:812–818PubMedCentralPubMedCrossRef
10.
go back to reference De Vito P, Di Nardo P, Palmery M, Peluso I, Luly P, Baldini PM (2003) Oxidant-induced pHi/Ca2+ changes in rat aortic smooth muscle cells. The role of atrial natriuretic peptide. Mol Cell Biochem 252:353–362PubMedCrossRef De Vito P, Di Nardo P, Palmery M, Peluso I, Luly P, Baldini PM (2003) Oxidant-induced pHi/Ca2+ changes in rat aortic smooth muscle cells. The role of atrial natriuretic peptide. Mol Cell Biochem 252:353–362PubMedCrossRef
11.
go back to reference Kiemer AK, Vollmar AM (2001) The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann Rheum Dis 60(Suppl 3):iii68–iii70PubMedCentralPubMed Kiemer AK, Vollmar AM (2001) The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann Rheum Dis 60(Suppl 3):iii68–iii70PubMedCentralPubMed
12.
go back to reference Stadler K (2012) Oxidative stress in diabetes. Adv Exp Med Biol 771:272–287PubMed Stadler K (2012) Oxidative stress in diabetes. Adv Exp Med Biol 771:272–287PubMed
13.
go back to reference Pfister R, Sharp S, Luben R et al (2011) Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies. PLoS Med 8:e1001112PubMedCentralPubMedCrossRef Pfister R, Sharp S, Luben R et al (2011) Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies. PLoS Med 8:e1001112PubMedCentralPubMedCrossRef
14.
go back to reference Miyashita K, Itoh H, Tsujimoto H et al (2009) Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–2892PubMedCentralPubMedCrossRef Miyashita K, Itoh H, Tsujimoto H et al (2009) Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–2892PubMedCentralPubMedCrossRef
15.
go back to reference Heinisch BB, Vila G, Resl M et al (2012) B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebo-controlled cross-over study in healthy men. Diabetologia 55:1400–1405PubMedCrossRef Heinisch BB, Vila G, Resl M et al (2012) B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: a randomised placebo-controlled cross-over study in healthy men. Diabetologia 55:1400–1405PubMedCrossRef
16.
go back to reference Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Investig 122:1022–1036PubMedCentralPubMedCrossRef Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Investig 122:1022–1036PubMedCentralPubMedCrossRef
17.
go back to reference Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328PubMedCrossRef Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328PubMedCrossRef
18.
go back to reference Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130:71–82PubMedCrossRef Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130:71–82PubMedCrossRef
19.
go back to reference Cheitlin MD, Armstrong WF, Aurigemma GP et al (2003) ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 16:1091–1110 Cheitlin MD, Armstrong WF, Aurigemma GP et al (2003) ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 16:1091–1110
20.
go back to reference Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605PubMedCrossRef Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605PubMedCrossRef
21.
go back to reference Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedCrossRef Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedCrossRef
22.
go back to reference Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRef Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605PubMedCrossRef
23.
go back to reference Meirhaeghe A, Sandhu MS, McCarthy MI et al (2007) Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Hum Mol Genet 16:1343–1350PubMedCrossRef Meirhaeghe A, Sandhu MS, McCarthy MI et al (2007) Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Hum Mol Genet 16:1343–1350PubMedCrossRef
24.
go back to reference Olsen MH, Hansen TW, Christensen MK et al (2005) N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension 46:660–666PubMedCrossRef Olsen MH, Hansen TW, Christensen MK et al (2005) N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension 46:660–666PubMedCrossRef
25.
go back to reference Kim HN, Januzzi JL Jr (2011) Natriuretic peptide testing in heart failure. Circulation 123:2015–2019PubMedCrossRef Kim HN, Januzzi JL Jr (2011) Natriuretic peptide testing in heart failure. Circulation 123:2015–2019PubMedCrossRef
26.
go back to reference Thireau J, Karam S, Fauconnier J et al (2012) Functional evidence for an active role of B-type natriuretic peptide in cardiac remodelling and pro-arrhythmogenicity. Cardiovasc Res 95:59–68PubMedCrossRef Thireau J, Karam S, Fauconnier J et al (2012) Functional evidence for an active role of B-type natriuretic peptide in cardiac remodelling and pro-arrhythmogenicity. Cardiovasc Res 95:59–68PubMedCrossRef
27.
go back to reference O'Connor CM, Starling RC, Hernandez AF et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43PubMedCrossRef O'Connor CM, Starling RC, Hernandez AF et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43PubMedCrossRef
28.
go back to reference Lenski M, Kazakov A, Marx N, Bohm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918PubMedCrossRef Lenski M, Kazakov A, Marx N, Bohm M, Laufs U (2011) Effects of DPP-4 inhibition on cardiac metabolism and function in mice. J Mol Cell Cardiol 51:906–918PubMedCrossRef
29.
go back to reference Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpe S, de Meester I (2006) Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 52:82–87PubMedCrossRef Brandt I, Lambeir AM, Ketelslegers JM, Vanderheyden M, Scharpe S, de Meester I (2006) Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 52:82–87PubMedCrossRef
30.
go back to reference Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Minamino N, Nakao K (2013) Complexity of molecular forms of B-type natriuretic peptide in heart failure. Heart 99:677–679PubMedCrossRef Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Minamino N, Nakao K (2013) Complexity of molecular forms of B-type natriuretic peptide in heart failure. Heart 99:677–679PubMedCrossRef
31.
go back to reference Gower WR Jr, Salhab KF, Foulis WL et al (2000) Regulation of atrial natriuretic peptide gene expression in gastric antrum by fasting. Am J Physiol Regul Integr Comp Physiol 278:R770–R780PubMed Gower WR Jr, Salhab KF, Foulis WL et al (2000) Regulation of atrial natriuretic peptide gene expression in gastric antrum by fasting. Am J Physiol Regul Integr Comp Physiol 278:R770–R780PubMed
32.
go back to reference Engeli S, Birkenfeld AL, Badin PM et al (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 122:4675–4679PubMedCentralPubMedCrossRef Engeli S, Birkenfeld AL, Badin PM et al (2012) Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 122:4675–4679PubMedCentralPubMedCrossRef
33.
go back to reference Welsh P, McMurray JJ (2012) B-type natriuretic peptide and glycaemia: an emerging cardiometabolic pathway? Diabetologia 55:1240–1243PubMedCrossRef Welsh P, McMurray JJ (2012) B-type natriuretic peptide and glycaemia: an emerging cardiometabolic pathway? Diabetologia 55:1240–1243PubMedCrossRef
34.
go back to reference Marfella R, Di Filippo C, Portoghese M et al (2009) Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome. J Lipid Res 50:2314–2323PubMedCentralPubMedCrossRef Marfella R, Di Filippo C, Portoghese M et al (2009) Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome. J Lipid Res 50:2314–2323PubMedCentralPubMedCrossRef
35.
go back to reference Ardehali H, Sabbah HN, Burke MA et al (2012) Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 14:120–129PubMedCentralPubMedCrossRef Ardehali H, Sabbah HN, Burke MA et al (2012) Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 14:120–129PubMedCentralPubMedCrossRef
36.
go back to reference Khairallah RJ, Khairallah M, Gelinas R et al (2008) Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation. J Mol Cell Cardiol 45:230–239PubMedCrossRef Khairallah RJ, Khairallah M, Gelinas R et al (2008) Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation. J Mol Cell Cardiol 45:230–239PubMedCrossRef
37.
go back to reference Bergandi L, Silvagno F, Russo I et al (2003) Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:2215–2221PubMedCrossRef Bergandi L, Silvagno F, Russo I et al (2003) Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:2215–2221PubMedCrossRef
38.
go back to reference Nielsen JM, Kristiansen SB, Norregaard R et al (2009) Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 11:638–647PubMedCrossRef Nielsen JM, Kristiansen SB, Norregaard R et al (2009) Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 11:638–647PubMedCrossRef
Metadata
Title
Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice
Authors
Eric Plante
Ahmed Menaouar
Bogdan A. Danalache
Tom L. Broderick
Marek Jankowski
Jolanta Gutkowska
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3201-4

Other articles of this Issue 6/2014

Diabetologia 6/2014 Go to the issue