Skip to main content
Top
Published in: Diabetologia 7/2013

01-07-2013 | Article

Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children

Authors: P. Achenbach, M. Hummel, L. Thümer, H. Boerschmann, D. Höfelmann, A. G. Ziegler

Published in: Diabetologia | Issue 7/2013

Login to get access

Abstract

Aims/hypothesis

Islet autoantibody-positive children progress to type 1 diabetes at variable rates. In our study, we asked whether characteristic autoantibody and/or gene profiles could be defined for phenotypes showing extreme progression.

Methods

Autoantibodies to insulin (IAA), GAD (GADA), insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) were measured in follow-up sera, and genotyping for type 1 diabetes susceptibility genes (HLA-DR/HLA-DQ, INS variable number of tandem repeats [VNTR] and single nucleotide polymorphisms at PTPN22, PTPN2, ERBB3, IL2, SH2B3, CTLA4, IFIH1, KIAA0350 [also known as CLEC16A], CD25, IL18RAP, IL10, COBL) was performed on the DNA samples of children born to a parent with type 1 diabetes and prospectively followed from birth for up to 22 years.

Results

Of the 1,650 children followed, 23 developed multiple autoantibodies and progressed to diabetes within 3 years (rapid progressors), while 24 children developed multiple autoantibodies and remained non-diabetic for more than 10 years from seroconversion (slow progressors). Rapid and slow progressors were similar with respect to HLA-DR/HLA-DQ genotypes, development of IAA, GADA and ZnT8A, and progression to multiple autoantibodies. In contrast, IA-2A development was considerably delayed in the slow progressors. Furthermore, both groups were effectively distinguished by the combined presence or absence of type 1 diabetes susceptibility alleles of non-HLA genes, most notably IL2, CD25, INS VNTR, IL18RAP, IL10, IFIH1 and PTPN22, and discrimination was improved among children carrying high-risk HLA-DR/HLA-DQ genotypes.

Conclusions/interpretation

Our data suggest that genotypes of non-HLA type 1 diabetes susceptibility genes influence the likelihood or rate of diabetes progression among children with multiple islet autoantibodies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221–229PubMedCrossRef Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221–229PubMedCrossRef
2.
go back to reference Achenbach P, Lampasona V, Landherr U et al (2009) Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia 52:1881–1888PubMedCrossRef Achenbach P, Lampasona V, Landherr U et al (2009) Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia 52:1881–1888PubMedCrossRef
3.
go back to reference Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033PubMedCrossRef Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G, EURODIAB Study Group (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033PubMedCrossRef
4.
go back to reference Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG (2004) Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 140:882–886PubMedCrossRef Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG (2004) Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med 140:882–886PubMedCrossRef
5.
go back to reference Steck AK, Johnson K, Barriga KJ et al (2011) Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care 34:1397–1399PubMedCrossRef Steck AK, Johnson K, Barriga KJ et al (2011) Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care 34:1397–1399PubMedCrossRef
6.
go back to reference Parikka V, Nanto-Salonen K, Saarinen M et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55:1926–1936PubMedCrossRef Parikka V, Nanto-Salonen K, Saarinen M et al (2012) Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 55:1926–1936PubMedCrossRef
7.
go back to reference Ziegler AG, Pflueger M, Winkler C et al (2011) Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. J Autoimmun 37:3–7PubMedCrossRef Ziegler AG, Pflueger M, Winkler C et al (2011) Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. J Autoimmun 37:3–7PubMedCrossRef
8.
go back to reference Bingley PJ, Christie MR, Bonifacio E et al (1994) Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 43:1304–1310PubMedCrossRef Bingley PJ, Christie MR, Bonifacio E et al (1994) Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 43:1304–1310PubMedCrossRef
9.
go back to reference Verge CF, Gianani R, Kawasaki E et al (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45:926–933PubMedCrossRef Verge CF, Gianani R, Kawasaki E et al (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45:926–933PubMedCrossRef
10.
go back to reference Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48:460–468PubMedCrossRef Ziegler AG, Hummel M, Schenker M, Bonifacio E (1999) Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48:460–468PubMedCrossRef
11.
go back to reference Puavilai G, Chanprasertyotin S, Sriphrapradaeng A (1999) Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res Clin Pract 44:21–26PubMedCrossRef Puavilai G, Chanprasertyotin S, Sriphrapradaeng A (1999) Diagnostic criteria for diabetes mellitus and other categories of glucose intolerance: 1997 criteria by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (ADA), 1998 WHO consultation criteria, and 1985 WHO criteria. World Health Organization. Diabetes Res Clin Pract 44:21–26PubMedCrossRef
12.
go back to reference Torn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ, Laboratories P (2008) Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51:846–852PubMedCrossRef Torn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ, Laboratories P (2008) Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51:846–852PubMedCrossRef
13.
go back to reference Schlosser M, Mueller PW, Torn C, Bonifacio E, Bingley PJ, Laboratories P (2010) Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia 53:2611–2620PubMedCrossRef Schlosser M, Mueller PW, Torn C, Bonifacio E, Bingley PJ, Laboratories P (2010) Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia 53:2611–2620PubMedCrossRef
14.
go back to reference Lampasona V, Schlosser M, Mueller PW et al (2011) Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8. Clin Chem 57:1693–1702PubMedCrossRef Lampasona V, Schlosser M, Mueller PW et al (2011) Diabetes antibody standardization program: first proficiency evaluation of assays for autoantibodies to zinc transporter 8. Clin Chem 57:1693–1702PubMedCrossRef
15.
go back to reference Walter M, Albert E, Conrad M et al (2003) IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of type 1 diabetes and associated autoimmunity. Diabetologia 46:712–720PubMedCrossRef Walter M, Albert E, Conrad M et al (2003) IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of type 1 diabetes and associated autoimmunity. Diabetologia 46:712–720PubMedCrossRef
16.
go back to reference Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707PubMedCrossRef Barrett JC, Clayton DG, Concannon P et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707PubMedCrossRef
17.
go back to reference Winkler C, Krumsiek J, Lempainen J et al (2012) A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 13:549–555PubMedCrossRef Winkler C, Krumsiek J, Lempainen J et al (2012) A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun 13:549–555PubMedCrossRef
18.
go back to reference Agresti A, Mehta CR, Patel NR (1990) Exact inference for contingency tables with ordered categories. JASA 85:453–458CrossRef Agresti A, Mehta CR, Patel NR (1990) Exact inference for contingency tables with ordered categories. JASA 85:453–458CrossRef
19.
go back to reference Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef
20.
go back to reference Sosenko JM, Krischer JP, Palmer JP et al (2008) A risk score for type 1 diabetes derived from autoantibody-positive participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 31:528–533PubMedCrossRef Sosenko JM, Krischer JP, Palmer JP et al (2008) A risk score for type 1 diabetes derived from autoantibody-positive participants in the Diabetes Prevention Trial-Type 1. Diabetes Care 31:528–533PubMedCrossRef
21.
go back to reference Bingley PJ (2010) Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 95:25–33PubMedCrossRef Bingley PJ (2010) Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 95:25–33PubMedCrossRef
22.
go back to reference Kulmala P, Savola K, Petersen JS et al (1998) Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. A population-based study. The Childhood Diabetes in Finland Study Group. J Clin Invest 101:327–336PubMedCrossRef Kulmala P, Savola K, Petersen JS et al (1998) Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. A population-based study. The Childhood Diabetes in Finland Study Group. J Clin Invest 101:327–336PubMedCrossRef
23.
go back to reference Decochez K, de Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45:1658–1666PubMedCrossRef Decochez K, de Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45:1658–1666PubMedCrossRef
24.
go back to reference Achenbach P, Warncke K, Reiter J et al (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53:384–392PubMedCrossRef Achenbach P, Warncke K, Reiter J et al (2004) Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53:384–392PubMedCrossRef
25.
go back to reference Bonifacio E, Bingley PJ, Shattock M et al (1990) Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes. Lancet 335:147–149PubMedCrossRef Bonifacio E, Bingley PJ, Shattock M et al (1990) Quantification of islet-cell antibodies and prediction of insulin-dependent diabetes. Lancet 335:147–149PubMedCrossRef
26.
go back to reference Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler AG, Bonifacio E (2004) Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 114:589–597PubMed Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler AG, Bonifacio E (2004) Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 114:589–597PubMed
27.
go back to reference Mayr A, Schlosser M, Grober N et al (2007) GAD autoantibody affinity and epitope specificity identify distinct immunization profiles in children at risk for type 1 diabetes. Diabetes 56:1527–1533PubMedCrossRef Mayr A, Schlosser M, Grober N et al (2007) GAD autoantibody affinity and epitope specificity identify distinct immunization profiles in children at risk for type 1 diabetes. Diabetes 56:1527–1533PubMedCrossRef
28.
go back to reference Krause S, Chmiel R, Bonifacio E et al (2012) IA-2 autoantibody affinity in children at risk for type 1 diabetes. Clin Immunol 145:224–229PubMedCrossRef Krause S, Chmiel R, Bonifacio E et al (2012) IA-2 autoantibody affinity in children at risk for type 1 diabetes. Clin Immunol 145:224–229PubMedCrossRef
29.
go back to reference Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12:781–792PubMedCrossRef Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12:781–792PubMedCrossRef
31.
go back to reference Dendrou CA, Plagnol V, Fung E et al (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41:1011–1015PubMedCrossRef Dendrou CA, Plagnol V, Fung E et al (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet 41:1011–1015PubMedCrossRef
32.
go back to reference Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697PubMedCrossRef Tang Q, Adams JY, Penaranda C et al (2008) Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28:687–697PubMedCrossRef
33.
go back to reference Long SA, Cerosaletti K, Bollyky PL et al (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T cells of type 1 diabetic subjects. Diabetes 59:407–415PubMedCrossRef Long SA, Cerosaletti K, Bollyky PL et al (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T cells of type 1 diabetic subjects. Diabetes 59:407–415PubMedCrossRef
34.
go back to reference Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337PubMedCrossRef Yamanouchi J, Rainbow D, Serra P et al (2007) Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 39:329–337PubMedCrossRef
35.
go back to reference Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283–6292PubMed Sgouroudis E, Albanese A, Piccirillo CA (2008) Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. J Immunol 181:6283–6292PubMed
36.
go back to reference Howson JM, Cooper JD, Smyth DJ et al (2012) Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:3012–3017PubMedCrossRef Howson JM, Cooper JD, Smyth DJ et al (2012) Evidence of gene-gene interaction and age-at-diagnosis effects in type 1 diabetes. Diabetes 61:3012–3017PubMedCrossRef
37.
go back to reference Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW (2004) Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 13:1755–1762PubMedCrossRef Kurreeman FA, Schonkeren JJ, Heijmans BT, Toes RE, Huizinga TW (2004) Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Hum Mol Genet 13:1755–1762PubMedCrossRef
38.
go back to reference Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMedCrossRef Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619PubMedCrossRef
39.
go back to reference Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389PubMedCrossRef Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389PubMedCrossRef
40.
go back to reference Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359:2767–2777PubMedCrossRef Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359:2767–2777PubMedCrossRef
41.
go back to reference Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317–1319PubMedCrossRef Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317–1319PubMedCrossRef
42.
go back to reference Nejentsev S, Howson JM, Walker NM et al (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887–892PubMedCrossRef Nejentsev S, Howson JM, Walker NM et al (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887–892PubMedCrossRef
43.
go back to reference von Herrath M (2009) Diabetes: a virus-gene collaboration. Nature 459:518–519CrossRef von Herrath M (2009) Diabetes: a virus-gene collaboration. Nature 459:518–519CrossRef
44.
go back to reference Smyth DJ, Cooper JD, Howson JM et al (2011) FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60:3081–3084PubMedCrossRef Smyth DJ, Cooper JD, Howson JM et al (2011) FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60:3081–3084PubMedCrossRef
45.
go back to reference MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20:624–632PubMedCrossRef MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20:624–632PubMedCrossRef
Metadata
Title
Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children
Authors
P. Achenbach
M. Hummel
L. Thümer
H. Boerschmann
D. Höfelmann
A. G. Ziegler
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 7/2013
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-2896-y

Other articles of this Issue 7/2013

Diabetologia 7/2013 Go to the issue