Skip to main content
Top
Published in: Diabetologia 6/2013

01-06-2013 | Article

Distinct and opposing roles for the phosphatidylinositol 3-OH kinase catalytic subunits p110α and p110β in the regulation of insulin secretion from rodent and human beta cells

Authors: J. Kolic, A. F. Spigelman, G. Plummer, E. Leung, C. Hajmrle, T. Kin, A. M. J. Shapiro, J. E. Manning Fox, P. E. MacDonald

Published in: Diabetologia | Issue 6/2013

Login to get access

Abstract

Aims/hypothesis

Phosphatidylinositol 3-OH kinases (PI3Ks) regulate beta cell mass, gene transcription, and function, although the contribution of the specific isoforms is unknown. As reduced type 1A PI3K signalling is thought to contribute to impaired insulin secretion, we investigated the role of the type 1A PI3K catalytic subunits α and β (p110α and -β) in insulin granule recruitment and exocytosis in rodent and human islets.

Methods

The p110α and p110β subunits were inhibited pharmacologically or by small hairpin (sh)RNA-mediated knockdown, and were directly infused or overexpressed in mouse and human islets, beta cells and INS-1 832/13 cells. Glucose-stimulated insulin secretion (GSIS), single-cell exocytosis, Ca2+ signalling, plasma membrane granule localisation, and actin density were monitored.

Results

Inhibition or knockdown of p110α increased GSIS. This was not due to altered Ca2+ responses, depolymerisation of cortical actin or increased cortical granule density, but to enhanced Ca2+-dependent exocytosis. Intracellular infusion of recombinant PI3Kα (p110α/p85β) blocked exocytosis. Conversely, knockdown (but not pharmacological inhibition) of p110β blunted GSIS, reduced cortical granule density and impaired exocytosis. Exocytosis was rescued by direct intracellular infusion of recombinant PI3Kβ (p110β/p85β) even when p110β catalytic activity was inhibited. Conversely, both the wild-type p110β and a catalytically inactive mutant directly facilitated exocytosis.

Conclusions/interpretation

Type 1A PI3K isoforms have distinct and opposing roles in the acute regulation of insulin secretion. While p110α acts as a negative regulator of beta cell exocytosis and insulin secretion, p110β is a positive regulator of insulin secretion through a mechanism separate from its catalytic activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339PubMedCrossRef Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339PubMedCrossRef
2.
go back to reference Kulkarni RN, Winnay JN, Daniels M, Brüning JC, Flier SN, Hanahan D et al (1999) Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest 104:R69–R75PubMedCrossRef Kulkarni RN, Winnay JN, Daniels M, Brüning JC, Flier SN, Hanahan D et al (1999) Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest 104:R69–R75PubMedCrossRef
3.
go back to reference Kulkarni RN, Holzenberger M, Shih DQ, Ozcan U, Stoffel M, Magnuson MA et al (2002) Beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet 31:111–115PubMed Kulkarni RN, Holzenberger M, Shih DQ, Ozcan U, Stoffel M, Magnuson MA et al (2002) Beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet 31:111–115PubMed
4.
go back to reference Ueki K, Okada T, Hu J, Liew CW, Assmann A, Dahlgren GM et al (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38:583–588PubMedCrossRef Ueki K, Okada T, Hu J, Liew CW, Assmann A, Dahlgren GM et al (2006) Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 38:583–588PubMedCrossRef
5.
go back to reference Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M et al (2010) Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metabol 12:619–632CrossRef Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M et al (2010) Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metabol 12:619–632CrossRef
6.
go back to reference El-Kholy W, MacDonald PE, Lin J-H, Wang J, Fox JM, Light PE et al (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 potently blocks Kv currents via a direct mechanism. FASEB J 17:720–722PubMed El-Kholy W, MacDonald PE, Lin J-H, Wang J, Fox JM, Light PE et al (2003) The phosphatidylinositol 3-kinase inhibitor LY294002 potently blocks Kv currents via a direct mechanism. FASEB J 17:720–722PubMed
7.
go back to reference Eto K, Yamashita T, Tsubamoto Y, Terauchi Y, Hirose K, Kubota N et al (2002) Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca2+] elevation signals. Diabetes 51:87–97PubMedCrossRef Eto K, Yamashita T, Tsubamoto Y, Terauchi Y, Hirose K, Kubota N et al (2002) Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca2+] elevation signals. Diabetes 51:87–97PubMedCrossRef
8.
go back to reference Zawalich WS, Zawalich KC (2000) A link between insulin resistance and hyperinsulinemia: inhibitors of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but not obese, rats. Endocrinology 141:3287–3295PubMedCrossRef Zawalich WS, Zawalich KC (2000) A link between insulin resistance and hyperinsulinemia: inhibitors of phosphatidylinositol 3-kinase augment glucose-induced insulin secretion from islets of lean, but not obese, rats. Endocrinology 141:3287–3295PubMedCrossRef
9.
go back to reference Persaud SJ, Asare-Anane H, Jones PM (2002) Insulin receptor activation inhibits insulin secretion from human islets of Langerhans. FEBS Lett 510:225–228PubMedCrossRef Persaud SJ, Asare-Anane H, Jones PM (2002) Insulin receptor activation inhibits insulin secretion from human islets of Langerhans. FEBS Lett 510:225–228PubMedCrossRef
10.
go back to reference Nunemaker CS, Zhang M, Satin LS (2004) Insulin feedback alters mitochondrial activity through an ATP-sensitive K+ channel-dependent pathway in mouse islets and beta-cells. Diabetes 53:1765–1772PubMedCrossRef Nunemaker CS, Zhang M, Satin LS (2004) Insulin feedback alters mitochondrial activity through an ATP-sensitive K+ channel-dependent pathway in mouse islets and beta-cells. Diabetes 53:1765–1772PubMedCrossRef
11.
go back to reference Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ (2006) Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes 55:2835–2842PubMedCrossRef Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ (2006) Identification of insulin signaling elements in human beta-cells: autocrine regulation of insulin gene expression. Diabetes 55:2835–2842PubMedCrossRef
12.
go back to reference Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ (2007) Gene expression heterogeneity in human islet endocrine cells in vitro: the insulin signalling cascade. Diabetologia 50:1239–1242PubMedCrossRef Muller D, Huang GC, Amiel S, Jones PM, Persaud SJ (2007) Gene expression heterogeneity in human islet endocrine cells in vitro: the insulin signalling cascade. Diabetologia 50:1239–1242PubMedCrossRef
13.
go back to reference Leibiger B, Moede T, Uhles S, Barker CJ, Creveaux M, Domin J et al (2010) Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837PubMedCrossRef Leibiger B, Moede T, Uhles S, Barker CJ, Creveaux M, Domin J et al (2010) Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837PubMedCrossRef
14.
go back to reference Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225PubMedCrossRef Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225PubMedCrossRef
15.
16.
go back to reference Okkenhaug K, Vanhaesebroeck B (2003) PI3K-signalling in B- and T cells: insights from gene-targeted mice. Biochem Soc Trans 31:270–274PubMedCrossRef Okkenhaug K, Vanhaesebroeck B (2003) PI3K-signalling in B- and T cells: insights from gene-targeted mice. Biochem Soc Trans 31:270–274PubMedCrossRef
18.
go back to reference Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Ueki K, Kadowaki T et al (2012) Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion through upregulation of newcomer granule fusions in pancreatic β-cells. PLoS One 7:e47381PubMedCrossRef Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Ueki K, Kadowaki T et al (2012) Acute inhibition of PI3K-PDK1-Akt pathway potentiates insulin secretion through upregulation of newcomer granule fusions in pancreatic β-cells. PLoS One 7:e47381PubMedCrossRef
19.
go back to reference Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMedCrossRef Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMedCrossRef
20.
go back to reference MacDonald PE, Joseph JW, Yau D, Diao J, Asghar Z, Dai F et al (2004) Impaired glucose-stimulated insulin secretion, enhanced intraperitoneal insulin tolerance, and increased beta-cell mass in mice lacking the p110g isoform of phosphoinositide 3-kinase. Endocrinology 145:4078–4083PubMedCrossRef MacDonald PE, Joseph JW, Yau D, Diao J, Asghar Z, Dai F et al (2004) Impaired glucose-stimulated insulin secretion, enhanced intraperitoneal insulin tolerance, and increased beta-cell mass in mice lacking the p110g isoform of phosphoinositide 3-kinase. Endocrinology 145:4078–4083PubMedCrossRef
21.
go back to reference Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Rückle T et al (2009) Insulin granule recruitment and exocytosis is dependent on p110g in insulinoma and human beta-cells. Diabetes 58:2084–2092PubMedCrossRef Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Rückle T et al (2009) Insulin granule recruitment and exocytosis is dependent on p110g in insulinoma and human beta-cells. Diabetes 58:2084–2092PubMedCrossRef
22.
go back to reference Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC (2005) Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 25:1596–1607PubMedCrossRef Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC (2005) Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 25:1596–1607PubMedCrossRef
23.
go back to reference Dai X-Q, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY et al (2011) SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 60:838–847PubMedCrossRef Dai X-Q, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY et al (2011) SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 60:838–847PubMedCrossRef
24.
go back to reference Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C et al (2008) Phosphoinositide 3-kinase p110b activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1:ra3PubMedCrossRef Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C et al (2008) Phosphoinositide 3-kinase p110b activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1:ra3PubMedCrossRef
25.
go back to reference Tengholm A, Meyer T (2002) A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr Biol 12:1871–1876PubMedCrossRef Tengholm A, Meyer T (2002) A PI3-kinase signaling code for insulin-triggered insertion of glucose transporters into the plasma membrane. Curr Biol 12:1871–1876PubMedCrossRef
26.
go back to reference Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, Grønning LM et al (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404:449–458PubMedCrossRef Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, Grønning LM et al (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404:449–458PubMedCrossRef
27.
go back to reference Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE et al (2005) PI 3-kinase p110b: a new target for antithrombotic therapy. Nat Med 11:507–514PubMedCrossRef Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE et al (2005) PI 3-kinase p110b: a new target for antithrombotic therapy. Nat Med 11:507–514PubMedCrossRef
28.
go back to reference Nylander S, Kull B, Björkman JA, Ulvinge JC, Oakes N, Emanuelsson BM et al (2012) Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J Thromb Haemost 10:2127–2136PubMedCrossRef Nylander S, Kull B, Björkman JA, Ulvinge JC, Oakes N, Emanuelsson BM et al (2012) Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J Thromb Haemost 10:2127–2136PubMedCrossRef
29.
go back to reference Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD et al (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16:1722–1733PubMed Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD et al (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16:1722–1733PubMed
30.
go back to reference Göpel S, Kanno T, Barg S, Galvanovskis J, Rorsman P (1999) Voltage-gated and resting membrane currents recorded from B cells in intact mouse pancreatic islets. J Physiol (Lond) 521:717–728CrossRef Göpel S, Kanno T, Barg S, Galvanovskis J, Rorsman P (1999) Voltage-gated and resting membrane currents recorded from B cells in intact mouse pancreatic islets. J Physiol (Lond) 521:717–728CrossRef
31.
go back to reference Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T et al (2000) Wortmannin, a PI3-kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through a cAMP-dependent pathway. Biochem Biophys Res Commun 270:798–805PubMedCrossRef Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T et al (2000) Wortmannin, a PI3-kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through a cAMP-dependent pathway. Biochem Biophys Res Commun 270:798–805PubMedCrossRef
32.
go back to reference Collier JJ, White SM, Dick GM, Scott DK (2004) Phosphatidylinositol 3-kinase inhibitors reveal a unique mechanism of enhancing insulin secretion in 832/13 rat insulinoma cells. Biochem Biophys Res Commun 324:1018–1023PubMedCrossRef Collier JJ, White SM, Dick GM, Scott DK (2004) Phosphatidylinositol 3-kinase inhibitors reveal a unique mechanism of enhancing insulin secretion in 832/13 rat insulinoma cells. Biochem Biophys Res Commun 324:1018–1023PubMedCrossRef
33.
go back to reference Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267PubMed Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256–5267PubMed
34.
go back to reference Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T et al (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–2163PubMed Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T et al (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem 267:2157–2163PubMed
35.
go back to reference Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A et al (2008) The p110b isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110g. Proc Natl Acad Sci U S A 105:8292–8297PubMedCrossRef Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A et al (2008) The p110b isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110g. Proc Natl Acad Sci U S A 105:8292–8297PubMedCrossRef
36.
go back to reference Wang Z, Thurmond DC (2009) Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 122:893–903PubMedCrossRef Wang Z, Thurmond DC (2009) Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 122:893–903PubMedCrossRef
37.
go back to reference Wen PJ, Osborne SL, Zanin M, Low PC, Wang H-TA, Schoenwaelder SM et al (2011) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491PubMedCrossRef Wen PJ, Osborne SL, Zanin M, Low PC, Wang H-TA, Schoenwaelder SM et al (2011) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491PubMedCrossRef
38.
go back to reference Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT et al (2000) Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet 26:379–382PubMedCrossRef Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT et al (2000) Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet 26:379–382PubMedCrossRef
39.
go back to reference Luo J, McMullen JR, Sobkiw CL, Zhang L, Dorfman AL, Sherwood MC et al (2005) Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol 25:9491–9502PubMedCrossRef Luo J, McMullen JR, Sobkiw CL, Zhang L, Dorfman AL, Sherwood MC et al (2005) Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol 25:9491–9502PubMedCrossRef
40.
go back to reference Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al (1997) p110d, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A 94:4330–4335PubMedCrossRef Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al (1997) p110d, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A 94:4330–4335PubMedCrossRef
41.
go back to reference Hügl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779PubMedCrossRef Hügl SR, White MF, Rhodes CJ (1998) Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem 273:17771–17779PubMedCrossRef
42.
go back to reference Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638PubMed Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638PubMed
43.
go back to reference Matheny RW, Adamo ML (2010) PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 17:677–688PubMedCrossRef Matheny RW, Adamo ML (2010) PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 17:677–688PubMedCrossRef
44.
go back to reference Hooshmand-Rad R, Hájková L, Klint P, Karlsson R, Vanhaesebroeck B, Claesson-Welsh L et al (2000) The PI 3-kinase isoforms p110a and p110b have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci 113:207–214PubMed Hooshmand-Rad R, Hájková L, Klint P, Karlsson R, Vanhaesebroeck B, Claesson-Welsh L et al (2000) The PI 3-kinase isoforms p110a and p110b have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci 113:207–214PubMed
45.
go back to reference Smith GC, Ong WK, Rewcastle GW, Kendall JD, Han W, Shepherd PR (2012) Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo. Biochem J 442:161–169PubMedCrossRef Smith GC, Ong WK, Rewcastle GW, Kendall JD, Han W, Shepherd PR (2012) Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo. Biochem J 442:161–169PubMedCrossRef
46.
go back to reference Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J et al (2012) PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 26:1380–1393PubMedCrossRef Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J et al (2012) PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 26:1380–1393PubMedCrossRef
47.
go back to reference Vogt PK, Gymnopoulos M, Hart JR (2009) PI 3-kinase and cancer: changing accents. Curr Opin Genet Dev 19:12–17PubMedCrossRef Vogt PK, Gymnopoulos M, Hart JR (2009) PI 3-kinase and cancer: changing accents. Curr Opin Genet Dev 19:12–17PubMedCrossRef
Metadata
Title
Distinct and opposing roles for the phosphatidylinositol 3-OH kinase catalytic subunits p110α and p110β in the regulation of insulin secretion from rodent and human beta cells
Authors
J. Kolic
A. F. Spigelman
G. Plummer
E. Leung
C. Hajmrle
T. Kin
A. M. J. Shapiro
J. E. Manning Fox
P. E. MacDonald
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 6/2013
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-2882-4

Other articles of this Issue 6/2013

Diabetologia 6/2013 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.